Habilitation à Diriger les Recherches (2015):
Contribution à l'étude d'équations non locales en dynamique des populations
Mémoire d'HDR, soutenue le 16 Novembre 2015 https://tel.archives-ouvertes.fr/tel-01238013/document.
Phd Thesis (2003):
Equation de réaction diffusion non-locale
Thèse de doctorat, soutenue le 18 Novembre 2003. https://tel.archives-ouvertes.fr/tel-00004313/document
New preprint
Saubin, M., Coville, J., Xhaard, C., Frey, P., Soubeyrand, S., Halkett, F., Fabre, F. (2023) Inferring invasion determinants with mechanistic models and multitype sample
https://www.biorxiv.org/content/10.1101/2023.03.21.533642v1 Ayala, M., Coville, J., & Forien, R. (2022). A measure-valued stochastic model for vector-borne viruses .https://arxiv.org/abs/2211.04563
Bouin, E., Coville, J., & Legendre, G. (2021). Sharp exponent of acceleration in general nonlocal equations with a weak Allee effect. https://hal.archives-ouvertes.fr/hal-03452141v1
Bouin, E., Coville, J., & Legendre, G. (2021). Acceleration in integro-differential combustion equations. arXiv preprint arXiv:2105.09946. https://arxiv.org/abs/2105.09946
Articles publiés:
45. Bouin, E., Coville, J., & Legendre, G. (2023). A simple flattening lower bound for solutions to some linear integrodifferential equations. Z. Angew. Math. Phys. 74:23 https://arxiv.org/abs/2303.00101
44. Bayen,T., Coville, J., & Mairet, F. (2022). Stabilization of the chemostat system with mutations and application to microbial production. Optimal Control Applications and Methods. https://hal.archives-ouvertes.fr/hal-03767646v1
43. Bayen, T., Cazenave-Lacroutz, H., Coville, J. & Mairet, F. (2022). Optimal control of microbial production in the chemostat IFAC 55,16, 208-213 .
42. Gabriel, E., Rodríguez-Cortes, F. J., Coville, J., Mateu, J., & Chadoeuf, J. (2022). Mapping the intensity function of a non-stationary point process in unobserved areas. To appear in Stoc. Env. Res. & Ris. Ass. https://arxiv.org/abs/2111.14403
41. Bayen, T., Cazenave-Lacroutz, H., & Coville, J. (2022). Stability of the chemostat system including a linear coupling between species. Discrete and Continuous Dynamical Systems-B, 28(3), 2104-2129. https://arxiv.org/abs/2110.09582
40. Brasseur, J., & Coville, J. (2021). Propagation phenomena with nonlocal diffusion in presence of an obstacle. Journal of Dynamics and Differential Equations, 1-65. https://arxiv.org/abs/2004.13360
39. Martin, O., Fernandez-Diclo, Y., Coville, J., & Soubeyrand, S. (2021). Equilibrium and sensitivity analysis of a spatio-temporal host-vector epidemic model. Nonlinear Analysis: Real World Applications, 57, 103194. https://arxiv.org/abs/2002.07542
38. Fabre, F., Coville, J., & Cunniffe, N. J. (2021). Optimising reactive disease management using spatially explicit models at the landscape scale. In Plant Diseases and Food Security in the 21st Century (pp. 47-72). Springer, Cham. https://arxiv.org/abs/1911.12131
37. Coville, J., Gui, C., & Zhao, M. (2021). Propagation acceleration in reaction diffusion equations with anomalous diffusions. Nonlinearity, 34(3), 1544.https://arxiv.org/abs/2003.05446
36. Coville, J. (2021). Can a population survive in a shifting environment using non-local dispersion?. Nonlinear Analysis, 212, 112416.https://arxiv.org/abs/2012.09441
35. Coville, J., & Hamel, F. (2020). On generalized principal eigenvalues of nonlocal operators witha drift. Nonlinear Analysis, 193, 111569. https://arxiv.org/abs/1812.11412
34. Brasseur, J., & Coville, J. (2020). A counterexample to the Liouville property of some nonlocal problems. In Annales de l'Institut Henri Poincaré C, Analyse non linéaire (Vol. 37, No. 3, pp. 549-579). Elsevier Masson. https://arxiv.org/abs/1804.07485
33. Coville, J. (2020). A Note on Liouville type results for a fractional obstacle problem. In 2018 MATRIX Annals (pp. 215-228). Springer, Cham. https://arxiv.org/abs/1903.00341
32. Brasseur, J., Coville, J., Hamel, F., & Valdinoci, E. (2019). Liouville type results for a nonlocal obstacle problem. Proceedings of the London Mathematical Society, 119(2), 291-328. https://arxiv.org/abs/1712.09877
31. Alfaro, M., & Coville, J. (2017). Propagation phenomena in monostable integro-differential equations: acceleration or not?. Journal of Differential Equations, 263(9), 5727-5758.https://arxiv.org/abs/1610.05908
30. Li, F., Coville, J., & Wang, X. (2017). On eigenvalue problems arising from nonlocal diffusion models. Discrete & Continuous Dynamical Systems, 37(2), 879.
29. Gabriel, E., Coville, J., & Chadoeuf, J. (2017). Estimating the intensity function of spatial point processes outside the observation window. Spatial Statistics, 22, 225-239.
28. Bonnefon, O., Coville, J., & Legendre, G. (2017). Concentration phenomen in some non-local equation. Discrete and Continuous Dynamical Systems-Series B, 22(3), 763-781.. http://arxiv.org/pdf/1510.01971v1
27. Berestycki, H., Coville, J., & Vo, H. H. (2016). On the definition and the properties of the principal eigenvalue of some nonlocal operators. Journal of Functional Analysis, 271(10), 2701-2751.https://arxiv.org/abs/1512.06529
26. Berestycki, H., Coville, J., & Vo, H. H. (2016). Persistence criteria for populations with non-local dispersion. Journal of mathematical biology, 72(7), 1693-1745. http://arxiv.org/pdf/1406.6346v2
25. Coville, J. (2015). Nonlocal refuge model with a partial control. Discrete and Continuous Dynamical Systems-Series A, 35(4), 1421-1446. http://arxiv.org/abs/1305.7122
24. Bonnefon, O., Coville, J., Garnier, J., Hamel, F., & Roques, L. (2014). The spatio-temporal dynamics of neutral genetic diversity. Ecological Complexity, 20, 282-292.
23. Bonnefon, O., Coville, J., Garnier, J., & Roques, L. (2014). Inside dynamics of solutions of integro-differential equations. Discrete & Continuous Dynamical Systems-B, 19(10), 3057.
22. Alfaro, M., Coville, J., & Raoul, G. (2014). Bistable travelling waves for nonlocal reaction diffusion equations. Discrete and Continuous Dynamical Systems-Series A, 34(5), 1775-1791. http://fr.arxiv.org/abs/1303.3554
21. Coville, J. (2013). Singular measure as principal eigenfunction of some nonlocal operators. Applied Mathematics Letters, 26(8), 831-835. http://fr.arxiv.org/abs/1302.0949
20. Alfaro, M., Coville, J., & Raoul, G. (2013). Travelling waves in a nonlocal reaction-diffusion equation as a model for a population structured by a space variable and a phenotypic trait. Communications in Partial Differential Equations, 38(12), 2126-2154. http://fr.arxiv.org/abs/1211.3228
19. Coville, J., Dávila, J., & Martínez, S. (2013). Pulsating fronts for nonlocal dispersion and KPP nonlinearity. In Annales de l'Institut Henri Poincaré C, Analyse non linéaire (Vol. 30, No. 2, pp. 179-223). Elsevier Masson. http://fr.arxiv.org/abs/1302.1053
18. Alfaro, M., & Coville, J. (2012). Rapid traveling waves in the nonlocal Fisher equation connect two unstable states. Applied Mathematics Letters, 25(12), 2095-2099.http://fr.arxiv.org/abs/1205.2349
17. Fabre, F., Montarry, J., Coville, J., Senoussi, R., Simon, V., & Moury, B. (2012). Modelling the evolutionary dynamics of viruses within their hosts: a case study using high-throughput sequencing. PLoS Pathogens, 8(4), e1002654. http://www.plospathogens.org/article/info%3Adoi%2F10.1371%2Fjournal.ppat.1002654
16. Coville, J. (2012). Harnack type inequality for positive solution of some integral equation. Annali di Matematica Pura ed Applicata, 191(3), 503-528. http://fr.arxiv.org/abs/1302.1677
15. Soubeyrand, S., Roques, L., Coville, J., & Fayard, J. (2011). Patchy patterns due to group dispersal. Journal of Theoretical Biology, 271(1), 87-99.
14. Coville, J., & Dávila, J. (2011). Existence of radial stationary solutions for a system in combustion theory. Discrete & Continuous Dynamical Systems-B, 16(3), 739. http://fr.arxiv.org/abs/1106.5597
13. Coville, J., Dirr, N. P., & Luckhaus, S. (2010). Non-existence of positive stationary solutions for a class of semi-linear PDEs with random coefficients. Networks and Heterogeneous Media, 5(4), 745-763. http://fr.arxiv.org/abs/1106.5138
12. Coville, J. (2010). On a simple criterion for the existence of a principal eigenfunction of some nonlocal operators. Journal of Differential Equations, 249(11), 2921-2953, http://fr.arxiv.org/abs/1106.5137
11. Coville, J. (2008). Remarks on the strong maximum principle for nonlocal operators. Electronic Journal of Differential Equations (EJDE)[electronic only], 2008, Paper-No. http://ejde.math.txstate.edu/Volumes/2008/66/abstr.html
10. Coville, J., Dávila, J., & Martínez, S. (2008). Nonlocal anisotropic dispersal with monostable nonlinearity. Journal of Differential Equations, 244(12), 3080-3118.. http://fr.arxiv.org/abs/1106.4531
9. Coville, J., Dávila, J., & Martínez, S. (2008). Existence and uniqueness of solutions to a nonlocal equation with monostable nonlinearity. SIAM Journal on Mathematical Analysis, 39(5), 1693-1709.http://fr.arxiv.org/abs/1106.5135
8. Coville, J. (2007). Travelling fronts in asymmetric nonlocal reaction diffusion equations: the bistable and ignition cases. Hal-00696208, http://hal.archives-ouvertes.fr/index.php?action_todo=search&view_this_doc=hal-00696208&version=1&halsid=ngfvlf0sblu5tbe17mcp0e5qi4
7. Coville, J. (2007). Maximum principles, sliding techniques and applications to nonlocal equations. Electronic Journal of Differential Equations (EJDE)[electronic only], 2007, Paper-No. http://ejde.math.txstate.edu/Volumes/2007/68/abstr.html
6. Cortazar, C., Coville, J., Elgueta, M., & Martinez, S. (2007). A nonlocal inhomogeneous dispersal process. Journal of Differential Equations, 241(2), 332-358.
5. Coville, J., & Dupaigne, L. (2007). On a non-local equation arising in population dynamics. Proceedings of the Royal Society of Edinburgh Section A: Mathematics, 137(4), 727-755.
4. Coville, J. (2006). On uniqueness and monotonicity of solutions of non-local reaction diffusion equation. Annali di Matematica Pura ed Applicata, 185(3), 461-485.
3. Coville, J., & Dupaigne, L. (2005). Propagation speed of travelling fronts in non local reaction–diffusion equations. Nonlinear Analysis: Theory, Methods & Applications, 60(5), 797-819.
2. Coville, J., & Dupaigne, L. (2003). Travelling fronts in integrodifferential equations. Comptes Rendus Mathematique, 337(1), 25-30.
1. Coville, J. (2003). Monotonicity in integrodifferential equations. Comptes Rendus Mathematique, 337(7), 445-450.
Preprint :
Coville, J., & Fabre, F. (2013). Convergence to the equilibrium in a Lotka-Volterra ODE competition system with mutations. arXiv preprint arXiv:1301.6237. http://fr.arxiv.org/abs/1301.6237
Coville, J. (2013). Convergence to equilibrium for positive solutions of some mutation-selection model. arXiv preprint arXiv:1308.6471.http://arxiv.org/abs/1308.6471