Habilitation à Diriger les Recherches (2015):
Contribution à l'étude d'équations non locales en dynamique des populations
Mémoire d'HDR, soutenue le 16 Novembre 2015 https://tel.archives-ouvertes.fr/tel-01238013/document.
Phd Thesis (2003):
Equation de réaction diffusion non-locale
Thèse de doctorat, soutenue le 18 Novembre 2003. https://tel.archives-ouvertes.fr/tel-00004313/document
New preprint
Ayala, M., Coville, J., & Soubeyrand, S. (2024). Group Dispersal Modelling revisited. https://arxiv.org/abs/2405.08384
Bouin, E., Coville, J., & Legendre, G. (2021). Sharp exponent of acceleration in general nonlocal equations with a weak Allee effect. https://hal.archives-ouvertes.fr/hal-03452141v1
Bouin, E., Coville, J., & Legendre, G. (2021). Acceleration in integro-differential combustion equations. arXiv preprint arXiv:2105.09946. https://arxiv.org/abs/2105.09946
Preprint:
Coville, J., & Fabre, F. (2013). Convergence to the equilibrium in a Lotka-Volterra ODE competition system with mutations. arXiv preprint arXiv:1301.6237. http://fr.arxiv.org/abs/1301.6237
Coville, J. (2013). Convergence to equilibrium for positive solutions of some mutation-selection model. arXiv preprint arXiv:1308.6471.http://arxiv.org/abs/1308.6471
Articles publiés:
48. Ayala, M., Coville, J., & Forien, R. (2024). A measure-valued stochastic model for vector-borne viruses, to appear in ALEA, https://arxiv.org/abs/2211.04563
47. Bouin, E., Coville, J., Zhang, X. (2024) Acceleration or finite speed propagation in weakly monostable reaction-diffusion equations. Nonlinear Analysis, 245, https://arxiv.org/abs/2312.09614, https://doi.org/10.1016/j.na.2024.113557
46.Saubin, M., Coville, J., Xhaard, C., Frey, P., Soubeyrand, S., Halkett, F., Fabre, F. (2024) Inferring invasion determinants with mechanistic models and multitype sample, Peer Community Journal, Volume 4, article no. e9. doi : 10.24072/pcjournal.356. https://peercommunityjournal.org/articles/10.24072/pcjournal.356/
45. Bouin, E., Coville, J., & Legendre, G. (2023). A simple flattening lower bound for solutions to some linear integrodifferential equations. Z. Angew. Math. Phys. 74:234 https://arxiv.org/abs/2303.00101 https://doi.org/10.1007/s00033-023-02118-2
44. Gabriel, E., Rodríguez-Cortes, F. J., Coville, J., Mateu, J., & Chadoeuf, J. (2023). Mapping the intensity function of a non-stationary point process in unobserved areas. Stoc. Env. Res. & Ris. Ass., 37(1), 327-343. https://arxiv.org/abs/2111.14403 , https://doi.org/10.1007/s00477-022-02304-0
43. Bayen,T., Coville, J., & Mairet, F. (2023). Stabilization of the chemostat system with mutations and application to microbial production. Optim Control Appl Meth.; 44(6): 3342–3360. https://hal.archives-ouvertes.fr/hal-03767646v1 https://doi.org/10.1002/oca.3041
42. Bayen, T., Cazenave-Lacroutz, H., Coville, J. & Mairet, F. (2022). Optimal control of microbial production in the chemostat IFAC 55,16, 208-213 . https://doi.org/10.1016/j.ifacol.2022.09.025
41. Bayen, T., Cazenave-Lacroutz, H., & Coville, J. (2022). Stability of the chemostat system including a linear coupling between species. Discrete and Continuous Dynamical Systems-B, 28(3), 2104-2129. https://arxiv.org/abs/2110.09582, https://doi.org/10.3934/dcdsb.2022160
40. Brasseur, J., & Coville, J. (2021). Propagation phenomena with nonlocal diffusion in presence of an obstacle. Journal of Dynamics and Differential Equations, 1-65. https://arxiv.org/abs/2004.13360
39. Martin, O., Fernandez-Diclo, Y., Coville, J., & Soubeyrand, S. (2021). Equilibrium and sensitivity analysis of a spatio-temporal host-vector epidemic model. Nonlinear Analysis: Real World Applications, 57, 103194. https://arxiv.org/abs/2002.07542
38. Fabre, F., Coville, J., & Cunniffe, N. J. (2021). Optimising reactive disease management using spatially explicit models at the landscape scale. In Plant Diseases and Food Security in the 21st Century (pp. 47-72). Springer, Cham. https://arxiv.org/abs/1911.12131
37. Coville, J., Gui, C., & Zhao, M. (2021). Propagation acceleration in reaction diffusion equations with anomalous diffusions. Nonlinearity, 34(3), 1544.https://arxiv.org/abs/2003.05446
36. Coville, J. (2021). Can a population survive in a shifting environment using non-local dispersion?. Nonlinear Analysis, 212, 112416.https://arxiv.org/abs/2012.09441
35. Coville, J., & Hamel, F. (2020). On generalized principal eigenvalues of nonlocal operators witha drift. Nonlinear Analysis, 193, 111569. https://arxiv.org/abs/1812.11412
34. Brasseur, J., & Coville, J. (2020). A counterexample to the Liouville property of some nonlocal problems. In Annales de l'Institut Henri Poincaré C, Analyse non linéaire (Vol. 37, No. 3, pp. 549-579). Elsevier Masson. https://arxiv.org/abs/1804.07485
33. Coville, J. (2020). A Note on Liouville type results for a fractional obstacle problem. In 2018 MATRIX Annals (pp. 215-228). Springer, Cham. https://arxiv.org/abs/1903.00341
32. Brasseur, J., Coville, J., Hamel, F., & Valdinoci, E. (2019). Liouville type results for a nonlocal obstacle problem. Proceedings of the London Mathematical Society, 119(2), 291-328. https://arxiv.org/abs/1712.09877
31. Alfaro, M., & Coville, J. (2017). Propagation phenomena in monostable integro-differential equations: acceleration or not?. Journal of Differential Equations, 263(9), 5727-5758.https://arxiv.org/abs/1610.05908
30. Li, F., Coville, J., & Wang, X. (2017). On eigenvalue problems arising from nonlocal diffusion models. Discrete & Continuous Dynamical Systems, 37(2), 879.
29. Gabriel, E., Coville, J., & Chadoeuf, J. (2017). Estimating the intensity function of spatial point processes outside the observation window. Spatial Statistics, 22, 225-239.
28. Bonnefon, O., Coville, J., & Legendre, G. (2017). Concentration phenomen in some non-local equation. Discrete and Continuous Dynamical Systems-Series B, 22(3), 763-781.. http://arxiv.org/pdf/1510.01971v1
27. Berestycki, H., Coville, J., & Vo, H. H. (2016). On the definition and the properties of the principal eigenvalue of some nonlocal operators. Journal of Functional Analysis, 271(10), 2701-2751.https://arxiv.org/abs/1512.06529
26. Berestycki, H., Coville, J., & Vo, H. H. (2016). Persistence criteria for populations with non-local dispersion. Journal of mathematical biology, 72(7), 1693-1745. http://arxiv.org/pdf/1406.6346v2
25. Coville, J. (2015). Nonlocal refuge model with a partial control. Discrete and Continuous Dynamical Systems-Series A, 35(4), 1421-1446. http://arxiv.org/abs/1305.7122
24. Bonnefon, O., Coville, J., Garnier, J., Hamel, F., & Roques, L. (2014). The spatio-temporal dynamics of neutral genetic diversity. Ecological Complexity, 20, 282-292.
23. Bonnefon, O., Coville, J., Garnier, J., & Roques, L. (2014). Inside dynamics of solutions of integro-differential equations. Discrete & Continuous Dynamical Systems-B, 19(10), 3057-3085. https://doi.org/10.3934/dcdsb.2014.19.3057
22. Alfaro, M., Coville, J., & Raoul, G. (2014). Bistable travelling waves for nonlocal reaction diffusion equations. Discrete and Continuous Dynamical Systems-Series A, 34(5), 1775-1791. http://fr.arxiv.org/abs/1303.3554
21. Coville, J. (2013). Singular measure as principal eigenfunction of some nonlocal operators. Applied Mathematics Letters, 26(8), 831-835. http://fr.arxiv.org/abs/1302.0949
20. Alfaro, M., Coville, J., & Raoul, G. (2013). Travelling waves in a nonlocal reaction-diffusion equation as a model for a population structured by a space variable and a phenotypic trait. Communications in Partial Differential Equations, 38(12), 2126-2154. http://fr.arxiv.org/abs/1211.3228
19. Coville, J., Dávila, J., & Martínez, S. (2013). Pulsating fronts for nonlocal dispersion and KPP nonlinearity. In Annales de l'Institut Henri Poincaré C, Analyse non linéaire (Vol. 30, No. 2, pp. 179-223). Elsevier Masson. http://fr.arxiv.org/abs/1302.1053
18. Alfaro, M., & Coville, J. (2012). Rapid traveling waves in the nonlocal Fisher equation connect two unstable states. Applied Mathematics Letters, 25(12), 2095-2099.http://fr.arxiv.org/abs/1205.2349
17. Fabre, F., Montarry, J., Coville, J., Senoussi, R., Simon, V., & Moury, B. (2012). Modelling the evolutionary dynamics of viruses within their hosts: a case study using high-throughput sequencing. PLoS Pathogens, 8(4), e1002654. http://www.plospathogens.org/article/info%3Adoi%2F10.1371%2Fjournal.ppat.1002654
16. Coville, J. (2012). Harnack type inequality for positive solution of some integral equation. Annali di Matematica Pura ed Applicata, 191(3), 503-528. http://fr.arxiv.org/abs/1302.1677
15. Soubeyrand, S., Roques, L., Coville, J., & Fayard, J. (2011). Patchy patterns due to group dispersal. Journal of Theoretical Biology, 271(1), 87-99.
14. Coville, J., & Dávila, J. (2011). Existence of radial stationary solutions for a system in combustion theory. Discrete & Continuous Dynamical Systems-B, 16(3), 739. http://fr.arxiv.org/abs/1106.5597
13. Coville, J., Dirr, N. P., & Luckhaus, S. (2010). Non-existence of positive stationary solutions for a class of semi-linear PDEs with random coefficients. Networks and Heterogeneous Media, 5(4), 745-763. http://fr.arxiv.org/abs/1106.5138
12. Coville, J. (2010). On a simple criterion for the existence of a principal eigenfunction of some nonlocal operators. Journal of Differential Equations, 249(11), 2921-2953, http://fr.arxiv.org/abs/1106.5137
11. Coville, J. (2008). Remarks on the strong maximum principle for nonlocal operators. Electronic Journal of Differential Equations (EJDE)[electronic only], 2008, Paper-No. http://ejde.math.txstate.edu/Volumes/2008/66/abstr.html
10. Coville, J., Dávila, J., & Martínez, S. (2008). Nonlocal anisotropic dispersal with monostable nonlinearity. Journal of Differential Equations, 244(12), 3080-3118.. http://fr.arxiv.org/abs/1106.4531
9. Coville, J., Dávila, J., & Martínez, S. (2008). Existence and uniqueness of solutions to a nonlocal equation with monostable nonlinearity. SIAM Journal on Mathematical Analysis, 39(5), 1693-1709.http://fr.arxiv.org/abs/1106.5135
8. Coville, J. (2007). Travelling fronts in asymmetric nonlocal reaction diffusion equations: the bistable and ignition cases. Hal-00696208, http://hal.archives-ouvertes.fr/index.php?action_todo=search&view_this_doc=hal-00696208&version=1&halsid=ngfvlf0sblu5tbe17mcp0e5qi4
7. Coville, J. (2007). Maximum principles, sliding techniques and applications to nonlocal equations. Electronic Journal of Differential Equations (EJDE)[electronic only], 2007, Paper-No. http://ejde.math.txstate.edu/Volumes/2007/68/abstr.html
6. Cortazar, C., Coville, J., Elgueta, M., & Martinez, S. (2007). A nonlocal inhomogeneous dispersal process. Journal of Differential Equations, 241(2), 332-358.
5. Coville, J., & Dupaigne, L. (2007). On a non-local equation arising in population dynamics. Proceedings of the Royal Society of Edinburgh Section A: Mathematics, 137(4), 727-755.
4. Coville, J. (2006). On uniqueness and monotonicity of solutions of non-local reaction diffusion equation. Annali di Matematica Pura ed Applicata, 185(3), 461-485.
3. Coville, J., & Dupaigne, L. (2005). Propagation speed of travelling fronts in non local reaction–diffusion equations. Nonlinear Analysis: Theory, Methods & Applications, 60(5), 797-819.
2. Coville, J., & Dupaigne, L. (2003). Travelling fronts in integrodifferential equations. Comptes Rendus Mathematique, 337(1), 25-30.
1. Coville, J. (2003). Monotonicity in integrodifferential equations. Comptes Rendus Mathematique, 337(7), 445-450.