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fructueux que j’entretiens avec eux et les opportunités qu’ils m’offrent. Je re-
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Introduction

Foreword

May 2, 2016

I wish to apologize to members of the jury because some of them would
have preferred to read this manuscript in French, and the others would have
preferred to read this manuscript in better English. However, I hope this text
is clear enough to allow all the jury members to assess my ability to supervise
research.

1.1 Short biography

In early January 2016, my older daughter (5 years old) explained my job to
another child by using her words (and her body movements, which cannot be
reproduced here): “My father is a researcher. He’s like a dog, which smells and
finds.” Obviously, this analogy is over-simplistic, and I have substantial work
to do to make my daughter understand what a researcher is and what kind of
researcher I am. This document, which was written to obtain the habilitation à
diriger des recherches (i.e. the accreditation to supervise research), illustrates
what kind of researcher I am: a researcher who carries out his own research
and who contributes to the research of colleagues; a researcher who tends to
explore various fields, techniques and issues, but who is consistently interested
in recurrent topics.

My research has been strongly influenced by my affiliation, since 2002, to
INRA (the French national research institute for agricultural research), which
is a hotspot for multidisciplinary science. It has also been influenced by my
early education (I liked to put my thinking cap on to understand issues in
mathematics, and also in history, physics, theology, sociology, etc.) and by
my university curriculum: I have an undergraduate degree in mathematics
and physics (classe préparatoire, Aix-en-Provence, 1996-1999), a License in
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economical science (Univ. Rennes 1, 2000-2001), a Master in statistics and
information analysis (ENSAI, Rennes, 1999-2002), a Master in fundamental
mathematics and applications with a specialization in statistics (Univ. Rennes
2, 2001-2002) and a Doctorate in biostatistics (Univ. Montpellier 2, 2002-
2005). My research has also been influenced by my time spent at the University
of Chicago with Michael Stein (master internship), at the Plant Epidemiology
research unit of INRA (Grignon) with Ivan Sache, at the Ludwig-Maximilians
University with Leonhard Held, at the University of Jyväskylä with Antti
Penttinen, at the University of Glasgow with Daniel Haydon, and at the BioSP
research unit of INRA (Avignon) with Joël Chadœuf (during my doctoral
period) and all the other members of BioSP, who contribute to establish a
stimulating environment.

These influences (and a few professional opportunities) led me to carry out
research in spatial and spatio-temporal statistics applied to plant and animal
epidemiology.

1.2 Statistics for plant (and animal) epidemiology

Epidemiology can be briefly described as the study of the development of dis-
ease in populations (this short description encompasses human, animal and
plant epidemiology). Disease is a broad term, which includes a huge variety
of disorders. Here, I focus on infectious diseases caused by pathogens such
as fungi, viruses and bacteria. For such diseases, human, animal and plant
epidemiology share the same general concepts and mechanisms (e.g. trans-
mission, incubation, basic reproduction number, co-evolution, etc.) and can
be tackled in very similar ways from the point of view of process modeling
and data analysis1.

An early demonstration of the utility of the spatial and quantitative anal-
ysis of data in epidemiology was made by Snow (1855) in his study On the
Mode of Communication of Cholera. In the mid-19th century, Snow identified
impure water as a vector for cholera: he mapped fatal cholera cases in Soho
(London; see Figure 1.1), noted the spatial clustering of these cases and iden-
tified the water pump from Broad Street as a potential source of the outbreak
(unknown particles were observed with a microscope in the water supplied by
the Broad Street pump, and when this pump was closed, the local epidemic
stopped). Snow carried out a larger-scale analysis of deaths from cholera (see
Table 1.2 and Figure 1.3). A larger rate of mortality was observed in sub-
districts where water was supplied by the Southwark and Vauxhall Water
Company whose water was contaminated by sewage.

Snow’s investigation on cholera shows how spatial and quantitative anal-
ysis of data contributes to the understanding of epidemics affecting humans.

1 It has however to be noted that some aspects of plant epidemiology are distinctive
from human and animal epidemiology and lead to specific challenges in modeling
plant diseases (Cunniffe et al., 2015).
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Fig. 1.1. Map showing the deaths from cholera in Broad Street, Golden Square,
and the neighborhood (Soho, London), from 19th August to 30th September 1854.
A black bar for each death is placed in the location of the house in which the fatal
attack took place. This map also indicates the locations of water pumps to which
the public had access. Original map from Snow (1855).

This statement holds for epidemics affecting plants as well. The study of
diseases of plants is an old science. For example, Theophrastus (c. 372 – c.
287 BC) provided a written testimony on plant diseases in his Enquiry into
Plants (Theophrastus, 1916, translated by Hort). The quantification of epi-
demics in plant populations had expanded much later, around the mid-20th
century, especially with the development of theoretical models describing the
dynamics of diseases in time and/or space; see Frantzen (2007, chap. 1) and
Strange (2003, chap. 3). Thus, a current of thought called theoretical plant
epidemiology emerged, using works in mathematical biology as a foundation
(e.g. Kermack and McKendrick, 1927), and it led to original studies such as
those on the effect of crop heterogeneity on the spread of diseases (Gilligan,
2008; Jeger, 2000). Meanwhile, the use of data and accompanying statistical
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Fig. 1.2. Table providing counts of deaths from cholera in sub-districts on the south
side of the Thames in London. The table also indicates companies supplying water
for each sub-district. Original table from Snow (1855).
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Fig. 1.3. Map showing the boundaries of the Registrar-General’s districts on the
south side of the Thames in London, and the water supply of those districts. Original
map from Snow (1855).

methods has also contributed to gain insight into processes involved in plant
epidemics; a precursory illustration of this set of approaches is the estimation
and interpretation of plant disease dispersal gradients (Gregory, 1945, 1968).

During the last decades, significant advances have been made in statistical
epidemiology in general and the statistical analysis of plant epidemics in par-
ticular. For example, generalized linear mixed models, survival analysis and
decision analysis have led to testing existing hypotheses and addressing new
questions (Scherm et al., 2006). More recently, the combination of a mecha-
nistic vision of epidemics, a probabilistic vision of observation processes and
a statistical approach for inferring model parameters and latent variables has
led to re-exploring the link between theory and data in plant epidemiology
(e.g. see Gibson, 1997; Soubeyrand et al., 2009c).

This brief overview gives only an idea of the vertiginous corpus of meth-
ods and results which have been established in quantitative analysis for plant
epidemiology. Since the beginning of my PhD studies, I have participated in
the development of this corpus and tried to bring original ideas by carrying
out research at the interplay between statistics, modeling, probability, plant
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epidemiology and, occasionally, animal epidemiology. Carrying out such mul-
tidisciplinary research led me to be a researcher in applied statistics. From
a publication perspective, this means writing articles for journals at the in-
terface between statistics and applied fields or for journals in other scien-
tific fields besides statistics. However, these articles may include advanced
methodological developments. For instance, my article published in Theoreti-
cal Population Biology (Soubeyrand et al., 2008a) provides and characterizes
a new auto-correlation function for circular Gaussian random processes. Since
publication, this work has been cited in the statistical literature, namely in
Bernoulli by Gneiting (2013) and Cheng and Xiao (2016), and in the Journal
of the American Statistical Association by Porcu et al. (2015).

Beyond my personal situation, it is interesting to see how application fields
can lead researchers in applied statistics to investigate new inference algo-
rithms, new spatial models, new testing procedures, etc. This is part of the
iterative process of research: in any scientific field, once new results have been
stated, one may be interested in refining them or understanding the discrep-
ancies between the results and reality. This in turn leads to new models and
methods. This iterative process led me, for instance, to propose new point
process models for particle dispersal and a new form of approximate Bayesian
computation (ABC).

1.3 My toolbox

In my research practice, I am not focused on a given methodology, but I exploit
diverse statistical and modeling tools and explore some of them in depth.
The main tools I have used are spatial and spatio-temporal point processes,
continuous-time Markov and semi-Markov processes, state-space models and
estimation algorithms.

I have used spatial and spatio-temporal point processes mainly for describ-
ing the dispersal of particles that propagate plant diseases (a point in these
point processes can represent the deposit location of a particle). For this appli-
cation, inhomogeneous Poisson point processes, Cox point processes, and in-
homogeneous Neyman-Scott point processes are particularly relevant because
their inhomogeneous intensity functions can model the spatial and temporal
heterogeneity of the risk of infection. The heterogeneity of the risk is due to
sources of infection, which have non-uniform spatio-temporal patterns.

I have mostly exploited continuous-time Markov and semi-Markov pro-
cesses to build genetic-space-time and individual-based models of epidemics
caused by fast-evolving pathogens. The (semi-)Markov property leads to
tractable models, in terms of estimation, despite the complex dependence
structure due to the interplay in the models of genetics, space and time.

State-space models can be found in most of my works because they form
a flexible modeling tool to address hidden processes (i.e. influential processes
for which no explanatory variable is available), scale change (e.g. between
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the process scale and the data scale) and data heterogeneity (in this case,
different types of data can be modeled conditional on a single unobserved
process model). I have recurrently considered a specific class of state-space
models, namely the mechanistic-statistical models, which combine a process
model built in a mechanistic way and a data model of the observation process.

My vision of estimation is more opportunistic than founded on dogmas.
Thus, when the model is rather simple and no prior information is available,
I apply maximum likelihood estimation or, more generally, minimum contrast
estimation. In contrast, when there is an informative prior knowledge about
parameters or when the model incorporates latent variables, which generate
a complex dependence structure in the model, then I adopt the Bayesian
approach. In the latter case, the models I deal with generally require the use
of numerical tools such as MCMC (Markov chain Monte-Carlo) algorithms or
ABC.

In the following chapters, I more marginally exploit other modeling and
statistical tools, for instance, circular Gaussian processes modeling anisotropy
functions, discrete-time Markov processes modeling the vertical dispersal of
particles, cylinder-based models providing a concise representation of group
dispersal, partial differential equations (PDE) providing a concise representa-
tion of population dynamics, convergence analyses providing the asymptotic
behavior of estimators, and randomization procedures allowing for the con-
struction of tests adapted to specific case-studies.

1.4 Contents of the manuscript

In Chapter 2, I illustrate how spatial Poisson point processes and other tools of
stochastic geometry, such as spatio-temporal point processes and object-based
models, can be exploited to model, infer and simulate processes depending on
the dispersal of particles. This chapter is introduced with an aggregative ap-
proach for constructing dispersal models, which are both based on a fine-scale
description of the dispersal dynamics and adapted to larger-scale data classi-
cally collected in plant epidemiology. Then, I present my work on anisotropic
dispersal models and group dispersal models. I conclude this chapter with two
examples of multi-year epidemics analyzed with modeling and inference tools
presented throughout Chapter 2.

Chapter 3 presents my work on genetic-space-time models, which are used
to infer transmission trees using spatio-temporal epidemiological and genetic
data. These models combine a spatio-temporal dynamics of the pathogen, and
an evolutionary model for the evolution of genetic sequences of the pathogen.
Estimation of model parameters and latent variables is carried out in the
Bayesian framework via approximate MCMC algorithms. This approach was
applied to infer transmission trees for foot-and-mouth outbreaks and a rabies
endemic dynamic.



8 1 Introduction

Chapter 4 addresses mechanistic-statistical models, which combine a pro-
cess model for the dynamics under study and a data model for the observation
process. Such models incorporating stochastic process models are introduced
in Chapter 2, but Chapter 4 focuses on PDE-based mechanistic-statistical
models. This approach is presented and applied to simulated and real-life
case studies concerning biological invasions (epidemics can be viewed as a
particular type of biological invasions) and long-term climatic dynamics.

In Chapter 5, I present three methodological works concerning param-
eter estimation without likelihood. Such estimation procedures (which may
circumvent difficulties encountered in the implementation of likelihood-based
approaches) can be particularly valuable when one aims to fit realistic, spatio-
temporal, epidemiological models to data2. Thus, in this chapter, I explore the
consequences of replacing the likelihood in the Bayesian formula of the pos-
terior distribution with a function of a contrast, I present an algorithm for
optimizing the distance between functional summary statistics in ABC, and I
present a study of the weak convergence of posteriors conditional on maximum
pseudo-likelihood estimates and its implications in ABC.

The last chapter of this document, Chapter 6, provides complementary
information concerning my work. First, it gives a snapshot of other contribu-
tions that have not been introduced in Chapters 2–5. Then, it gives informa-
tion about supervision, teaching, networks and projects I have been involved
in. Finally, it is concluded by a section about my perspectives of research.

2 Fitting realistic, spatio-temporal, epidemiological models to data is often a dif-
ficult task because one generally has to handle, for example, latent processes,
spatial dependencies, and heterogeneity in data.
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Stochastic geometry applied to particle
dispersal studies

Author’s references: Allard and Soubeyrand (2012), Bourgeois et al. (2012),
Bousset et al. (2015), Mrkvička and Soubeyrand (2015), Rieux et al. (2014),
Soubeyrand et al. (2007b), Soubeyrand et al. (2007c), Soubeyrand et al.
(2007d), Soubeyrand et al. (2008a), Soubeyrand et al. (2008b), Soubeyrand
et al. (2009b), Soubeyrand et al. (2009c), Soubeyrand et al. (2011), Soubeyrand
et al. (2014b), Soubeyrand et al. (2015).

Plant diseases due to fungi such as rusts and powdery mildew are mainly
spread through the dissemination of microscopic particles called spores, which
are released by wind gusts from symptomatic plants (Ingold, 1971; Rapilly,
1991). Characterizing the dissemination of spores contributes to understand-
ing the dynamics of epidemics, assessing disease impacts on crop growth and
crop yield, and designing control strategies. Spatial point processes (Diggle,
1983; Illian et al., 2008; Stoyan et al., 1995) naturally emerge in this context
for modeling the spatial pattern of the deposit locations of spores. For in-
stance, a typical situation consists of assuming that (i) the spores are emitted
by one or several point sources in the 2D plane, (ii) transports of particles
are mutually independent, and (iii) dispersal distances separating, in a given
direction, the source locations and the deposit locations of particles are drawn
from a decreasing probability density function. Under these assumptions, the
spatial pattern of deposit locations in the 2D plane can be modeled by a spatial
Poisson point process with an inhomogeneous intensity function. This process,
which is a classical tool of stochastic geometry, is a basic component included,
explicitly or implicitly, in many spatial dispersal models and spatio-temporal
propagation models representing the dynamics of airborne plant diseases.

In this chapter, we aim to illustrate how spatial Poisson point processes and
other tools of stochastic geometry such as spatio-temporal point processes and
object-based models can be exploited to model, infer and simulate processes
depending on the dispersal of particles. In this context, inference is usually
based on standard methods and algorithms, e.g. maximum likelihood with
a Nelder-Mead or an MCEM algorithm, and Bayesian estimation with an
MCMC algorithm.

Section 2.1 describes an aggregative approach to building dispersal models
adapted to data classically collected in plant epidemiology. This aggregative
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approach is based on a fine-scale description of the dispersal dynamics that
is derived to obtain larger-scale models of observed processes. Section 2.2
presents a series of anisotropic dispersal models constructed to characterize
dispersal capacities of particles as a function of the direction. Section 2.3 intro-
duces group dispersal models, which relax the independence hypothesis often
assumed for the transports of particles. Sections 2.4 and 2.5 give examples of
medium and large spatial-scale, multi-year epidemics analyzed with modeling
and inference tools presented along this chapter.

2.1 An aggregative approach to build dispersal models

2.1.1 Summary of the approach

Wind-borne dispersal of particles can be studied at various scales: within a
few square centimeters as well as between continents. By considering dispersal
from a mechanistic perspective, we show in this section how to develop spe-
cific but coherent models for dispersal processes observed at different scales:
specific because each model is tailored for a given situation, coherent because
all models stem from a single base model. For this purpose, we build a model
at a fine scale, i.e. a scale at which describing the sources of variations is nat-
ural, inherent and intuitive. Then, models at larger scales are built based on
the fine-scale model, using an approach similar to the multi-scale modeling
approach developed in physics where a macroscopic model is derived from a
microscopic model (Weinan and Engquist, 2003; Weinan et al., 2003). Thus,
explicit links between model structures at the fine scale and at each specific
scale can be exhibited, and parameter estimations corresponding to different
scales can be compared.

Here, the fine-scale model describes the probabilistic behavior of the pres-
ence/absence of the disease on small-scale susceptible units. The model in-
cludes the effects of spatially unstructured and structured covariates (e.g. due
to genotype, physiology, climate) affecting the infectiousness of the infectious
units and the receptivity of the susceptible units. Then, the fine-scale model
can be scaled up to build larger-scale models adapted to observations.

2.1.2 Fine-scale model

Assumptions

We focus on the spread of a plant disease between two dates corresponding
to the beginning and the end of an epidemic cycle. The disease of interest
is transmitted via particles, which can be either specialized cells (spores),
whole organisms (bacteria), or structures embedding pathogens (pollen grains,
insects).
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We assume that the variability of the disease cycle duration is negligible,
and that a common starting point in time exists for the transmission from all
infectious plants.

We assume that at the starting point the infectious plant units are de-
tectable, and that they remain infectious during the cycle. At the end of the
cycle, we assume that the newly infected plant units, thereafter called infected
units, are detectable. The newly infected units are not infectious during the
cycle.

We assume that the rules governing the transmission mechanisms are the
same in all the spatial domain we are looking at.

Plants or plant units are considered as points in space marked by a quali-
tative sanitary status: either healthy, exposed (i.e. infected but not infectious)
or infectious. No new plant unit is generated during the study period.

From a temporal point of view, time is discrete, each time step correspond-
ing to the beginning of a cycle.

Epidemic spread is modeled by a three-step mechanism. First, particles are
dispersed from each infectious plant or plant unit. Second, the accumulation
of particles over a given susceptible unit defines a local infectious potential.
Third, the susceptible unit becomes infected with a success probability de-
pending on the local infectious potential.

Mathematical translation

Let xi denote the location of the ith unit in the studied spatial domain. For
a given time t, let δit = 1 if the health status of unit i is observed at time t,
δit = 0 otherwise. Health status of unit i at time t is described by the binary
variables Sit, Eit and Iit:

• Sit = 1 if unit i is susceptible (i.e. healthy), Sit = 0 otherwise,
• Eit = 1 if unit i is exposed (i.e. infected but not infectious), Eit = 0

otherwise, and
• Iit = 1 if unit i is infectious, Iit = 0 otherwise.

Particle dispersal from a given infectious unit i is described by the function
x 7→ f(x−xi), where x is any location in the study domain and f is a dispersal
kernel, i.e. the probability distribution function of the deposit locations of
particles emitted at the origin. Various parametric forms have been proposed
for the dispersal kernel (e.g. see Austerlitz et al., 2004; Tufto et al., 1997, and
the following sections), which is a key component of numerous propagation
models in epidemiology and ecology.

The local infectious potential at location x and time t (viewed as a measure
of the risk of infection of a susceptible host unit that would be located at x)
is written as the following weighted sum (Mollison, 1977):

λ(x) =
∑
i

ciIitf(x− xi), (2.1)
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where the contribution of each infectious unit depends on the spatial lag x−xi
between the infectious unit and the target location x, and on the infection
strength ci ≥ 0 of the infectious unit. Then, the probability of infection of a
susceptible unit located at point xj is described by a function depending on
the local infectious potential:

P (Ej,t+1 = 1 | λ(xj),Sjt = 1) = g(λ(xj)),

where g is a link function from R+ to [0, 1]. Interestingly, the form of g has not
to be chosen arbitrarily, but it can be determined via additional mechanistic
assumptions such as the ones proposed in the paragraph entitled Examples of
specifications (see below).

If all infectious units are observed and if the observations are made at the
beginning and the end of a cycle, parameter estimation can then be carried
out by maximizing the following log-likelihood:∑

j:δjtδj,t+1=1
Sjt=1

Ej,t+1 log{g(λ(xj))}+ (1−Ej,t+1) log{1− g(λ(xj))}. (2.2)

Depending on the shape of f , (2.2) is the log-likelihood of a generalized linear
or nonlinear model with Bernoulli observation distribution (Harrell, 2013;
Huet, 2004; McCullagh and Nelder, 1989).

Note that in (2.2) the sum is computed only for units j such that Sjt = 1
because the other units, already infected at time t, do not bring information
on the parameters in the framework of interest here. In Chapter 3, we will
study situations leading to more complex likelihoods including more data,
more processes and more parameters.

Examples of specifications

In practice, one must specify the nature of the infectious and susceptible units,
the dispersal kernel f and the other components of the model. The list below
provides typical specifications.

• Units can be agricultural plots, plants, leaves or other plant sections. The
specified resolution determines what one means by fine-scale model.

• Poisson specification. Each infectious unit i spreads around its location
a random number of particles, for example a Poisson number of parti-
cles with mean ci. The locations of particles dispersed around infectious
unit i are, for example, independently distributed from a 2D-exponential
dispersal kernel:

x 7→ f(x− xi) =
1

2πβ2
exp

(
−||x− xi||

β

)
, (2.3)
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where || · || is the Euclidean distance and β > 0 is called dispersal parame-
ter1. Thus, the random field of particles generated by i is an inohomogene-
nous Poisson point process with intensity function x 7→ cif(x−xi) defined
over R2. Assuming that dispersal processes from different infectious units
are independent, the random field of particles generated by all infectious
units is an inhomogeneous Poisson point process whose intensity at point
x is the local infectious potential λ(x) =

∑
i ciIitf(x− xi).

• The argument in the dispersal kernel f is often the Euclidean distance, as
in Equation (2.3), or a geographic distance, as in Sections 2.4 and 2.5. How-
ever, other types of arguments can be used depending upon the context.
Indeed, f can be a function of the distance and the direction (see Section
2.2) if there is a prevailing wind for example. If the disease spreads through
contacts between individuals, relations between individuals can be mod-
eled by a network and distances on this network used as the argument of
the dispersal function (Dargatz et al., 2005; Hufnagel et al., 2004; Parham
and Ferguson, 2006).

• The susceptible unit, at the fine scale, can be an infinitesimal susceptible
zone with area dx. The health status Ej,t+1 is defined, in this case, by the
presence or the absence of the disease at time t+1 on the susceptible unit j
with area dx and location xj . Under the Poisson specification made above,
the area dx captures a Poisson number of particles with mean λ(xj)dx.
Assuming that particle attacks are independent and that an attack is suc-
cessful (i.e. it leads to infection) with probability aj , then j captures a
Poisson number of successfully-attacking particles with mean ajλ(xj)dx,
and the probability that j is infected satisfies:

P (Ej,t+1 = 1 | λ(xj),Sjt = 1) = gj(λ(xj)) = 1− exp{−ajλ(xj)dx},

which is equal to one minus the probability that j does not capture
successfully-attacking particles. Here, the link function gj depends on j
because aj is assumed to vary with j: gj : u 7→ gj(u) = 1− exp(−aju).

Introduction of covariates

Infection success depends on many local factors (Rapilly, 1991) such as plant
characteristics (e.g. genotype, individual variations within a genetically homo-
geneous plantation, age, size), environmental variables (e.g. the soil and the
climate, which can influence plant physiology), variations in source infectivity
(some infectious plants may be more infectious than others because of a larger
production of particles on this plant, or a larger local population of vectors
for a vector-borne disease).

These factors can be introduced in the model in the effects aj and ci. These
effects may depend on locations xj and xi, respectively, or may explicitly

1 The multiplicative constant 1/2πβ2 in Equation (2.3) ensures that f is a proba-
bility density function over R2.
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depend on covariates (e.g. soil composition). Section 2.4 shows an example
where the effects ci are modeled as a log-normal random field. Section 2.5
shows an example where the effects aj and ci are modeled as deterministic and
parametric functions of covariates characterizing susceptible and infectious
units.

2.1.3 Deriving the fine-scale model to build models adapted to
various disease-observation scales

The fine-scale model proposed above describes the presence/absence of a dis-
ease on infinitesimal units. In practice, various sorts of disease measures cor-
responding to various observation scales are encountered2. In the following,
we show how the fine-scale model can be derived to obtain models adapted to
the observation scale. It has however to be noted that the observation units
are supposed to be small enough to consider that the local infectious potential
is constant within any unit.

Counting the lesions on susceptible units

Consider a susceptible unit j with area sj and central point xj (to avoid
additional notation, similar notation are used to denote infinitesimal units
in the fine-scale model and the observation units in the larger-scale models).
Suppose that each successfully-attacking particle generates a lesion on the
susceptible unit, and that the success probability of any attack is constant
and equal to a. By using the Poisson specification made above, j captures
a Poisson number of particles with mean sjλ(xj), and the number Nj,t+1 of
lesions generated at time t+ 1 from the particles is then Poisson distributed
with mean sjaλ(xj), i.e.:

P (Nj,t+1 = n) = exp{−sjaλ(xj)}
(sjaλ(xj))

n

n!
. (2.4)

Note that in this subsection and the following ones, the probabilistic condi-
tioning is omitted to simplify notation; e.g. P (Nj,t+1 = n | λ(xj),Sj,t = 1) is
simply denoted by P (Nj,t+1 = n).

If lesions can be identified, then the disease measure can be lesion counts,
and the log-likelihood used to estimate the parameters is:∑
j:δjtδj,t+1=1

Sjt=1

logP (Nj,t+1 = nj,t+1)

=
∑

j:δjtδj,t+1=1
Sjt=1

nj,t+1 log{sjaλ(xj)} − nj,t+1aλ(xj)− log(nj,t+1!),

2 A review on disease intensity measurements in plant epidemiology and their re-
lationships was made by McRoberts et al. (2003).
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where nj,t+1 are the observed values of Nj,t+1, and the summation is per-
formed on units observed at times t and t+ 1 (i.e. δjtδj,t+1 = 1) and healthy
at time t (i.e. Sjt = 1).

Remark 1: the sum in this log-likelihood is computed only for healthy units
at time t. However, already infected units at time t could also be considered
in the log-likelihood. Indeed, they can be affected by particles dispersed from
the infectious units and, consequently, they can bring information on the pa-
rameters. However, for taking into account this information, the autoinfection
(i.e. the process of infection of a host by itself) must be modeled as well as
its interaction with the alloinfection (i.e. the process of infection of a host by
other hosts). This point is not tackled here.

Remark 2: here and thereafter, we assume that the observation units are
small enough to consider that the local infectious potential is constant within
any unit. To relax this assumption, and using the Poisson specification, the
term sjaλ(xj) should be replaced in Equation (2.4) by the integral of x 7→
aλ(x) over the area covered by j.

Measuring the infected areas of susceptible units

When lesions are hardly distinguishable, counting lesions is impossible and one
relies on severity measures, the most classical one being the infected area on
the susceptible unit, say Sjt for unit j at time t. Suppose that the area Sj,t+1 is
a random variable depending on Nj,t+1 and sj : Sj,t+1 = F (Nj,t+1, sj), where
F is a random function which may be selected empirically and/or based on
mechanistic assumptions about the disease. For example Sj,t+1 can be derived
from a spatial Boolean process (Stoyan et al., 1995; Molchanov, 1997) if lesions
are assumed to be independent surface areas. The density probability function
of Sj,t+1 is

p(Sj,t+1) =

∞∑
N=0

h(Sj,t+1 | N, sj)
(sjaλ(xj))

N

N !
exp(−sjaλ(xj))

where h(· | N, s) is the conditional density probability function of F (N, s)
given N and s. The log-likelihood is then:∑

j:δjtδj,t+1=1
Sjt=1

log p(Sj,t+1).

Observing the presence/absence of the disease on susceptible units

The easiest way to measure the disease on a given susceptible unit is often to
observe whether it is present or not on the unit. The absence of the disease at
time t+ 1 corresponds to the event {Sj,t+1 = 1}, the presence of the disease
at time t + 1 corresponds to the event {Sj,t+1 = 0}. The disease is not on
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unit j at time t + 1 if no particle succeeds in infecting j, which occurs with
probability P (Sj,t+1 = 1) = P (Nj,t+1 = 0) = exp(−sjaλ(xj)) because Nj,t+1

follows a Poisson distribution with mean sjaλ(xj); see Equation (2.4). Thus
Sj,t+1 is Bernoulli-distributed with success probability exp(−sjaλ(xj)).

In this case, we obtain the log-likelihood:∑
j:δjtδj,t+1=1

Sjt=0

(1− Sj,t+1) log{1− exp(−sjaλ(xj))} − Sj,t+1sjaλ(xj). (2.5)

This formula is similar to the log-likelihood (2.2), with gj(u) = 1−exp(−sjau)
depending on the unit characteristics sj and a.

Counting the infected sub-units of susceptible units

Sometimes, the observation unit (e.g. a plant) is split into mj sub-units (e.g.
the leaves) and the disease measure is the number of infected sub-units Mjt.
Let Sjkt denote the sanitary status of sub-unit k of unit j at time t. Suppose
that unit j is completely healthy at time t, i.e. Sjkt = 1 for all k = 1, . . . ,mj .
Following the paragraph above, Sjk,t+1 is Bernoulli-distributed with proba-
bility exp(−sjkaλ(xj)), where sjk is the area of sub-unit k. All sub-units of
unit j are assumed to be submitted to the same infectious potential λ(xj).
In addition, Sjk,t+1, k = 1, . . . ,mj , are independent because under the Pois-
son assumption the potential attacks of the sub-units are independent. This
setting yields the following:

• In the case where the sub-unit areas are the same (i.e. sjk = sj/mj),
Mj,t+1 follows a binomial distribution with size mj and success probability
pj = 1− exp(−sjaλ(xj)/mj). Thus the log-likelihood is:∑
j:δjtδj,t+1=1

Sjt=1

log
( mj

Mj,t+1

)
+Mj,t+1 log pj − (mj−Mj,t+1) log(1−pj),

(2.6)

where ( mM ) = m!/{M !(m−M)!}.
• In the case where the sub-unit areas are different and cannot be mea-

sured individually, one can for example consider the areas as indepen-
dently and identically distributed with probability density function hs.
Then, 1 − Sjk,t+1 is Bernoulli-distributed with success probability pj =∫
s
{1−exp(−saλ(xj))}hs(s)ds, Mj,t+1 follows a binomial distribution with

size mj and success probability pj , and the log-likelihood can be written
as in (2.6) by replacing pj by its new expression.

2.1.4 Implications

Deriving models adapted to data from a fine-scale model allows (i) the estima-
tion of biologically relevant parameters, those defined in the fine-scale model,
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(ii) and the comparison / combination of experiments performed at different
scales3.

Concerning point (i), for each constructed model, we have written a log-
likelihood upon which the inference on the parameters can be based. In par-
ticular, inference on the parameters included in the infectious potential λ is
possible in each case since λ appears in each expression of the log-likelihood.
Moreover, each context offers the possibility to infer other parameters that
are specific to the context: for example, the parameters which could link the
receptor and source effects (aj and ci) to covariates (Section 2.1.2), or the pa-
rameters which could be involved in the random function F linking the lesion
count to the infected area (Section 2.1.3).

The aggregative approach presented in this section is applicable / gen-
eralizable to different types of mechanisms, different types of data, different
mathematical representations of the mechanisms, and different probabilistic
representations of the observation processes. This point is the core of this
chapter and Chapter 4, which deals with mechanistic-statistical modeling.

2.2 Anisotropic dispersal

2.2.1 Models

In the models under consideration here, deposit locations of particles emitted
by a point source at the origin form a spatial Poisson point pattern with
inhomogeneous intensity decreasing along radial directions. In addition the
decrease along radial directions is anisotropic, i.e. it varies with respect to the
direction.

The models of Klein et al. (2003), Stockmarr (2002) and Tufto et al. (1997)
based on 3D spatial Brownian motions describing spore transports allow the
introduction of anisotropy by adding trends to the horizontal components of
the Brownian motions. Another set of approaches consists in incorporated
von Mises functions (commonly used to describe the distributions of circular
data; see Fisher, 1995) into dispersal kernels to achieve anisotropy. Thus, in
the model of Herrmann et al. (2011); Wagner et al. (2004); Wälder et al.
(2009), the Euclidean distance from the source is multiplied by a function of
the direction, typically a von Mises function. The approach that we followed
in Soubeyrand et al. (2007c, 2008a, 2009b) and Rieux et al. (2014) also uses
von Mises functions, or more generally functions defined on the circle, but
these functions are used to modify the parameter of the dispersal kernel as

3 In an other framework, namely the mapping of weeds, we combined three types
of weed data to interpolate the spatial intensity function of weeds; see Bourgeois
et al. (2012). The three types of data are counts of weeds in small quadrats, counts
censored by interval in large quadrats, and areas of high intensity of weeds. A
unique intensity function governs the probabilistic laws of the three types of data.
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well as the source strength. This approach, presented below, leads to a double
anisotropy in the dispersal of particles.

Anisotropizing dispersal kernels

Consider a point source located at the origin of the planar space R2. Suppose
that the deposit locations of particles form a Poisson point process with in-
tensity at location x ∈ R2 proportional to the isotropic exponential dispersal
kernel (introduced in Section 2.1.2):

fiso(x) =
1

2πβ2
iso

exp

(
−||x||
βiso

)
,

where ||·|| is the Euclidean distance and βiso > 0 is called dispersal parameter.
The multiplicative constant 1/2πβ2

iso ensures that fiso is a probability density
function over R2.

The isotropic kernel fiso has been generalized by Soubeyrand et al. (2007c)
into a doubly anisotropic exponential dispersal kernel:

f(x) =
α(φ)

β(φ)2
exp

(
− ||x||
β(φ)

)
, (2.7)

where φ is the angle made by x, α(·) is a circular probability density function
(defined over [0, 2π) and whose integral over [0, 2π) is one) and β(·) is a
positive circular function (defined over [0, 2π)). It can be easily verified that
f is, like fiso, a probability density function over R2. α(φ) gives the density of
deposit locations of particles in direction φ: the larger α(φ), the more deposited
particles in direction φ. β(φ) is the dispersal parameter in direction φ: the
larger β(φ), the further in expectation particles are deposited in direction φ.

Other isotropic kernels can obviously be anisotropized in the same way.
For example, Soubeyrand et al. (2009b) proposed to generalize the isotropic
Gaussian kernel into:

f(x) =
α(φ)

β(φ)2
exp

(
− ||x||

2

2β(φ)2

)
,

and the isotropic geometric kernel into:

f(x) =
α(φ)(γ − 1)(γ − 2)

β(φ)2

(
1 +
||x||
β(φ)

)−γ
.

where γ is an additional shape parameter in the geometric kernel which could
also be replaced by a positive circular function. Other classical dispersal ker-
nels anisotropized in the same way are presented in Rieux et al. (2014).
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Specifying the anisotropy functions using von Mises functions

It was first proposed in Soubeyrand et al. (2007c) to specify α and β using
von Mises functions, which are regular and unimodal functions defined over
the circle:

α(φ) =
1

2πI0(σα)
exp{σα cos(φ− µα)}

β(φ) =
β0

2πI0(σβ)
exp{σβ cos(φ− µβ)}

where µα ∈ [0, 2π) is the mean dispersal direction and σα ≥ 0 measures
the dispersion around µα; µβ ∈ [0, 2π) is the direction along which par-
ticles are deposited the furthest in expectation, σβ ≥ 0 measures the dis-
persion of dispersal distances around µβ , and β0 > 0 is a multiplicative
constant measuring how far from the source particles are deposited; and

I0(σ) = (2π)−1
∫ 2π

0
exp{σ(θ− µ)}dθ. Obviously, other parametric forms than

the von Mises form could be used in the same way, e.g. mixtures of von Mises
functions, cardioid functions, wrapped Cauchy or normal functions; see Fisher
(1995).

Specifying the anisotropy functions using circular Gaussian
random processes

To take into account rougher anisotropies, Soubeyrand et al. (2008a) used cir-
cular Gaussian random processes (GRP) to specify the anisotropy functions.
The anisotropy functions α and β are defined by:

α(φ) =
1

λ0
exp(Zα(φ)) (2.8)

β(φ) = exp(Zβ(φ)), (2.9)

where λ0 is a multiplicative constant such that α is a density probability
function over the [0, 2π), Zα and Zβ are the realizations of two independent
stationary circular GRPs with means ηα ∈ R and ηβ ∈ R, variances κ2α and
κ2β and circular correlation functions (CCF) Cα and Cβ .

In this work, one of the concerns was the roughness of the circular GRPs
and, consequently, the shape of the CCFs. Therefore, several CCFs were pro-
posed and a model selection procedure was applied to select the most appro-
priate CCF among the proposed ones. CCFs are generally obtained by using
the chordal distance as the argument of a correlation function defined over
R: let C denote a valid correlation function over R, then φ 7→ C(2 sin(φ/2))
is a valid correlation function on the circle with radius one (2 sin(φ/2) is the
chordal distance between two points belonging to the unit circle and separated
by the angle φ). Two CCFs built in such a way were considered: the first one
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(φ 7→ exp{−2 sin(φ/2)/α}, α > 0) was obtained from the exponential corre-
lation function and the other one (φ 7→ exp[−{2 sin(φ/2)/α}γ ], α > 0, γ > 0)
was obtained from the exponential-power correlation function. In addition,
Soubeyrand et al. (2008a) built the following CCF without resorting to this
technique:

C(φ) = 1− sinδ(φ/2), ∀φ ∈ [0, 2π), (2.10)

where δ ∈ (0, 2) is between zero and two to get a valid (positive definite)
CCF. Since this new CCF was not obtained using the chordal distance as the
argument of a correlation function defined on the line, its validity had to be
checked (i.e. the positive definiteness of the CCF had to be shown). Using
theory on positive definite functions presented in Sasváry (1994), Soubeyrand
et al. (2008a) derived the Bochner’s theorem for the circle that provides the
class of positive definite functions defined over the circle. CCF (2.10) was
shown to belong to this class if parameter δ was in the interval (0, 2). Several
properties of CCF (2.10) were obtained. In particular, this CCF is continuous
but not differentiable at the origin. Thus, a GRP with CCF (2.10) is mean
square continuous but not mean square differentiable. Therefore, such a GRP
is a rather rough process.

2.2.2 Estimation

For particles whose sizes are measured in micrometers (e.g. spores, pollen
grains) and particles which are not detected easily in fields, orchards or forests
even if they are visible by eyes (e.g. seeds), we do not generally observe the
point pattern formed by the deposited particles, but, we may observe num-
bers of particles collected in traps, numbers of symptoms on plants for diseases
disseminated with spores, or presence–absence of seedlings. By following the
aggregative approach described in Section 2.1, the observed data (e.g. counts)
can be modeled like random variables whose distributions depend on the dis-
persal kernel. Then, a likelihood may be written and inference based on this
likelihood may be performed.

For example, Soubeyrand et al. (2007c) considered counts of wheat plants
infected by the yellow rust and fitted to data the kernel (2.7) incorporating
von Mises functions by specifying a binomial observation process and using a
Newton-Raphson algorithm to maximize the likelihood.

Exploiting the same data set, Soubeyrand et al. (2008a) fitted to data the
kernel (2.7) incorporating circular GRPs by specifying a binomial observation
process and using a Markov chain Expectation-Maximization algorithm (Wei
and Tanner, 1990) to obtain maximum likelihood estimates of parameters and
latent variables of their hierarchical model; see Figure 2.2.

Soubeyrand et al. (2009c) studied the spatio-temporal spread of powdery
mildew infecting plantago lanceolata, the data consisting in presence patterns
of powdery mildew in a set of about 4000 host plant patches. They included the
kernel (2.7) incorporating von Mises functions in their spatio-temporal model
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and fitted this model to data using a Markov chain Monte Carlo algorithm
(Robert and Casella, 1999) to assess posterior distributions of parameters.
This study is presented in Section 2.5.

Rieux et al. (2014) assessed the dispersal of spores of the wind-dispersed
banana plant fungus Mycosphaerella fijiensis by estimating the parameters
of several dispersal kernels (i.e. exponential, geometric, Wald and power-
exponential) anisotropized with von Mises functions. In this case, data were
counts of lesions on banana leaves. However, these counts were generally noised
by lesions due to sources of spores located outside the experimental plot.
Therefore, genetic analyses of subsets of lesions were performed to distinguish
(i) lesions due to the source of spores voluntary introduced at the center of
the experimental plot, and (ii) lesions due to exogenous sources of spores (the
source had a specific genotype, say Gs, not represented among the exogenous
sources). Thus, three types of lesion counts were available for each sampled
leaf: the total number of lesions, the number of genotyped lesions which was
generally lower than the total number of lesions, and the number of genotyped
lesions with genotype Gs. Here the observation process was modeled using an
hypergeometric distribution depending on the anisotropic dispersal kernel.
Parameters were estimated by maximizing the likelihood, and the Akaike cri-
terion was used to investigate the significance of the anisotropy and to select
the best dispersal kernel.

2.2.3 Application

The yellow rust of wheat is an airborne plant disease caused by the fungus
Puccinia striiformis. This fungus forms lesions on wheat leaves. The disease
is spread by spores produced by the lesions and transported in the air mostly
by wind and rain.

For gaining insight into the anisotropic spread of yellow rust in large field
plots, the following experiment was carried out in 2002. Wheat plants infected
with yellow rust were settled in a source plot (2.5 × 1.6m2) located more or
less at the center of a 75,000m2 field of healthy wheat plants. Five days later,
infected leaves were counted for 187 trap plots (1× 1m2) located at the nodes
of a regular grid covering the field area. In each panel of Figure 2.1, the gray
point indicates the location of the source plot, and figures are at the locations
of the trap plots. On the left panel, the figures are the counts of infected
leaves in the trap plots. On the right panel, the figures are leaf density levels
in the trap plots; the levels rank from 1 to 7 and correspond to different total
counts of leaves (see the correspondences at the top-left). Thus, for each trap
plot i ∈ {1, . . . , n = 187}, we observe the location xi ∈ R2 of its center, the
count yi ∈ N of infected leaves, and the total count qi ∈ N of leaves. By
convention, the source plot is located at the origin.

The count of infected leaves Yi among the qi leaves in trap plot i is sup-
posed to be drawn from a binomial distribution with size qi and probability
p(xi):
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Fig. 2.1. Data maps. Left: counts of infected leaves in the 1m2-trap plots. Right:
levels of the leaf density in the trap plots. In each panel, the gray point indicates
the location of the source plot.

Yi ∼ Binomial{qi, p(xi)}, (2.11)

where

p(x) = 1− exp{−λ0f(x)}, (2.12)

where f is the exponential anisotropic kernel given by Equation (2.7). The
link function u 7→ 1 − exp(−u) is obtained by applying the aggregative ap-
proach introduced in Section 2.1 leading to a model whose response variable
is the count of infected sub-units in a sampling unit4. In this application, the
anisotropy functions incorporated into f were specified using circular Gaus-
sian random processes (GRP; see Equations (2.8–2.9)) characterized by cir-
cular correlation functions (CCF) satisfying Equation (2.10). For assessing
the suitability of this anisotropy model, we compared it to three other mod-
els: the anisotropic model including von Mises functions, the model including

4 See specifically the paragraphs entitled Observing the presence/absence of the
disease on susceptible units and Counting the infected sub-units of susceptible
units.
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two GRPs with exponential CCFs, and the model including two GRPs with
exponential-power CCFs (this model has two additional parameters compared
to the three other models). The four models were compared using the Akaike’s
information criterion (AIC, Burnham and Anderson, 2002), the quadratic (or
Brier) score and the spherical score (Gneiting and Raftery, 2005). The AIC
is based on the likelihood function and is penalized by the number of param-
eters; the lower the AIC, the more suitable the model. The quadratic and
the spherical scores are based on the probability distributions which are pre-
dicted for the observed variables; the higher these scores, the more suitable
the model.

Table 2.1 shows the values of the criteria which were obtained for the four
models. The modeling of the disease spread is clearly improved when GRPs
are used instead of von Mises functions for modeling α and β. Among the
models including the GRPs, the one with CCFs (2.10) is the more suitable. It
is even slightly better than the model including the GRPs with exponential-
power CCFs (which has more parameters).

Table 2.1. Model comparison. Number of parameters (N), value of the log-likelihood
(loglik), Akaike’s information criterion (AIC), quadratic score and spherical score
obtained when λ and µ are proportional to von Mises functions, or when they are
functions of GRPs with various CCFs.

Model N loglik AIC quadratic spherical
Von Mises 6 -280.2 572.4 -61.2 148.4
GRP with CCF given by Eq. (2.10) 6 -104.2 220.4 -46.4 156.0
GRP with exponential CCF 6 -112.5 237.0 -49.3 154.1
GRP with exponential-power CCF 8 -104.2 224.4 -46.6 155.9

Figure 2.2 shows Monte Carlo estimates of the anisotropy functions (left
panels) and the probabilities for wheat leaves to be infected. These plots
highlight the irregularity of the particle dispersal and the resulting disease
spread.

If the global trend, i.e. the deterministic component, of the spread is com-
monly associated with the mean wind direction and speed (Aylor, 1990; Mc-
Cartney and Fitt, 2006), the local fluctuations, i.e. the stochastic component,
are still poorly understood. Finely describing the irregular patterns of particle
dispersal and disease spread should be valuable for better understanding the
processes underlying these phenomena.

The advantage of the model proposed here is that local fluctuations are es-
timated and, consequently, can be analyzed together with meteorological vari-
ables such as wind, turbulence and humidity (meteorological measurements
are not available in the experiment analyzed above). Turbulence, which is
involved in release, escape from the canopy, transport and deposit of spores
(Aylor, 1999; Aylor and Flesch, 2001), is especially expected to play a role in
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the irregularity of dispersal patterns. Turbulence is for instance a key com-
ponent to describe the random paths of spores in the Lagrangian stochastic
simulation model (Aylor and Flesch, 2001; Wilson, 2000). In practice, we could
plan in future works to analyze the possible link between strong wind gusts
and the peaks displayed in Figure 2.2. It seems however difficult to link a given
wind gust with a given peak. Instead of focusing on such specific events, it
may be more pragmatic to link irregularity characteristics of the model output
with general characteristics of meteorological variables. For example we could
plan to analyze the possible link between the frequency of changes in wind
direction and the roughness of the intensity function α and the mean distance
function β (the roughness is measured by the parameter of the correlation
function).

Characterizing the irregularity of the dispersal should also be valuable in
the modeling of epidemics. An epidemic is a nonlinear system made of many
propagation events, as the one studied in this paper, repeated in space and
time. It is important to catch the stochasticity of single propagation events
because it can affect the global dynamics of the epidemic (Rohani et al.,
2002). It would be especially interesting to investigate what sort of patterns
will be obtained after several generations given the irregularity of the intensity
function α and the mean distance function β, and their discrepancy.

2.2.4 Side topic 1: sequential sampling for estimating anisotropy

Anisotropy is observed in dispersal patterns occurring for a wide range of
biological systems. While dispersal models more and more often incorporate
anisotropy, the sampling schemes required to collect data for validation usu-
ally do not account for the anisotropy of dispersal data. In Soubeyrand et al.
(2009b), using the anisotropic model presented in Section 2.2.1, we carried
out a study aimed at recommending an appropriate sampling scheme for
anisotropic data. In a first step, we showed with a simulation study that
prior knowledge of dispersal anisotropy can be used to improve the sampling
scheme. One of the main guidelines to be proposed is the orientation of the
sampling grid around the main dispersal directions. In a second step, we pro-
posed a sequential sampling procedure used to automatically build anisotropic
sampling schemes adapted to the actual anisotropy of dispersal.

2.2.5 Side topic 2: 3D anisotropy

In most of the propagation studies in plant epidemiology, the spread of the
disease is represented in the 2D-horizontal plane. In Soubeyrand et al. (2008b),
we analyzed the spread of a disease in a wheat field where observations were
made at different times, at different locations in the horizontal plane, and
at different heights, i.e. leaf layers, in the vegetal cover. Here, the vertical
dimension was viewed as a discrete space consisting of the ground, the different
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Fig. 2.2. Left: Monte-Carlo estimates of the anisotropy functions α (up to a multi-
plicative constant λ0; Eq. (2.8)) and β (Eq. (2.9)) based on circular GRPs. Monte-
Carlo estimates of the resulting probabilities (in %) for wheat leaves to be infected
(Eq. (2.12)).

leaf layers5, and the air above the vegetal cover. To analyze the horizontal and
vertical spread of the disease, we built dispersal kernels in the 3D space. These
dispersal kernels inherently incorporate anisotropy because the structure of
the space is different in the horizontal and the vertical dimensions.

5 It has to be noted that for adult wheat plants, the leaf layers are usually unam-
biguously identified even if the plants continue to grow.
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Combining vertical and horizontal dispersal functions

Let i and j denote two host units whose locations in the horizontal plane R2

are xi and xj and whose locations in the vertical space {1,2,. . . ,K} are zi and
zj , where K is the number of host layers in the vertical dimension (layer 1 is
the bottom host layer; layer K is the top host layer).

We modeled the dispersal function of particles (i, j) 7→ p(i, j) by combin-
ing a horizontal dispersal function (HDF) f and a vertical dispersal function
(VDF) v(·, ·). The HDF f describes the transport of particles in the horizontal
plane above the top layer and is analogous to 2D dispersal kernels presented
in the previous sections. The quantity f(xj − xi) is the probability density
for a particle that reached the air at xi to be definitely re-introduced into
the cover at xj . The VDF v(·, ·) governs the transports of particles in the
vertical direction between the host layers, the ground (denoted by G) below
layer 1, and the air (denoted by A) above layer K. In particular, if i and j are
located at the same site in the horizontal plane (i.e. xi = xj), v(zi, zj) is the
probability for a particle released by unit i at layer zi to be deposited on unit
j at layer zj . Besides, v(zi,A) (resp. v(zi,G)) is the probability for a particle
released by unit i at leaf layer zi to reach the air above layer K (resp. the
ground).

Combining f and v yields the following expression for the dispersal func-
tion p:

p(i, j) =

{
v(ki, kj) if xi = xj

v(ki,A)f(xj − xi) v(K,kj)
1−v(K,A) if xi 6= xj .

(2.13)

The term6 v(K, kj)/{1 − v(K,A)} is the probability for a particle which is
re-introduced into the cover at location zi to be deposited on unit j at layer
kj .

We proposed two constructions for v which do not require physical or bio-
logical input variables (in contrast with the sophisticated model proposed by
Koizumi and Kato, 1991), but offer more flexibility than the one-parameter
vertical kernel of Djurle and Yuen (1991). The first construction for v was
inspired by the Beer-Lambert law, which is used in optics to assess the in-
tensity of the light after passing through a material. The second construction
was based on a discrete Markov chain. In both constructions, disease severity
is assumed to be locally constant in the horizontal plane and, consequently,
ingoing and outgoing horizontal flux of particles at a given layer are assumed
to be equal.

6 In this term, the first argument of the numerator v(K, kj) is K because the
particle is re-introduced by above. The denominator appears because xj is the
location where the particle is definitely re-introduced into the host layers and,
consequently, the probability for the particle initially at leaf layer K to be de-
posited at leaf layer kj is conditional on the fact that the particle cannot reach
again the air above the cover.
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Here we only show how to construct the VDF v using a discrete Markov
chain. Particles are assumed to move both up and down until they are de-
posited on a host layer or absorbed by the air A or by the ground G. We
assume that particle movements obey a stationary Markov chain, where a
particle can be in one of the following states:

1. at layer k in {1, . . . ,K}, but not deposited on a host unit;
2. at layer k in {1, . . . ,K} and deposited on a host unit (a star will be used

to denote these states);
3. in the air A above the top layer;
4. deposited on the ground G.

State A, state G and states where the particle is deposited on a host unit
are absorbing states. Different specifications for the transition probabilities
between the non-absorbing and absorbing states may be proposed; Figure 2.3
shows an example using three parameters. Once the transition probabilities
are specified, the expression of v is obtained by computing the limiting tran-
sition probabilities of the absorbing states conditional on the initial state.
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Fig. 2.3. Markov chain used to construct a model for the vertical dispersal function
(VDF) of particles. A star is used to mark the absorbing layer states. The transition
probabilities for this Markov chain are defined with three parameters γ2, γ3 and γ4,
which have to satisfy the following constraints: 0 < γ2, γ3, γ4 < 1 and γ3 + γ4 < 1.
Heuristically for this specification, γ4 is related to the gravity force which is supposed
to be constant whatever the leaf layer and, because γ2 < 1, ascending of particles is
most probable at upper leaf layers than at lower leaf layers.

Application

The 3D dispersal kernels introduced above were incorporated into a spatio-
temporal model of the spread of yellow rust (a fungal disease) in a wheat field.
This model was developed to analyze experimental data shown in Figure 2.4
(top). A source of disease was settled at the center of a healthy wheat field
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and the disease severity (i.e. the proportion of the sporulating (or infectious)
surface on wheat leaves) was measured across time and at different leaf layers.
Since wheat plants grown during the sampling period, the disease was mea-
sured at the nodes of a time-varying 3D-grid (at sampling time 5, leaf layer 1
disappeared and leaf layers 3 and 4 were generated).
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Fig. 2.4. Top panel: spatio-temporal evolution of the disease severity. Each rectangle
provides, for a given time and a given leaf layer, the spatial variation of the disease
severity. Bottom left: simulation of an epidemic using the estimated parameters,
using the real data at time one as the initial state, and preserving the space-time
structure of the vegetal cover. Bottom right: Evolutions in time of the severities
(box-plots), and the number of infected units (lines). These elements are in black
for the real data set and in grey for the simulated data set.

The spatio-temporal model is a two-stage model describing the joint dis-
tribution of the occurrence (new infection) and the severity of the disease:
occurrence of the disease on a leaf is modeled at the first stage; severity of the
disease is modeled at the second stage given disease occurrence. The model for
disease occurrence was built with the aggregative approach of Section 2.1 (see
specifically paragraph Observing the presence/absence of the disease on sus-
ceptible units) and depends on an infection potential where source strengths
coincide with severities observed in the past. The model for disease severity is
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more empirical: it is defined as a zero-inflated beta GLM whose explanatory
variables include occurrence variables and the infection potential.

Parameter estimation was carried out with maximum likelihood and model
selection (to choose the most appropriate horizontal and vertical dispersal
functions) was performed with the Akaike criterion (AIC). The smallest AIC
value was obtained with the VDF based on the Markov chain shown in Figure
2.3 and with the Cauchy HDF satisfying:

f(x) =
1

2πγ21

(
1 +
||x||2

γ21

)−3/2
.

Figure 2.4 (bottom left) shows a simulated epidemic under the estimated
parameters. Qualitatively, this simulation reproduces some aspects of the real
epidemic quite well. In particular, (i) the overall temporal trend of the disease
spread (stagnation at time two, strong increase at time 3 and so on), (ii) the
scattered spatial pattern of the disease at the first time steps, and (iii) the
decrease in disease severity at the centre of the plot at time seven are well
reproduced. Figure 2.4 (bottom right) provides a quantitative comparison
between the simulated epidemic and the real epidemic shown in Fig. 2.4 (top).
It shows the temporal variation of the severities (box-plots) and the number
of infected units (lines) for both the real and simulated data (resp. in black
and grey). Similar patterns are observed. Additional results carried out on
series of simulations are provided by Soubeyrand et al. (2008b).

2.3 Group dispersal

2.3.1 Doubly inhomogeneous Neyman-Scott point process

Group dispersal occurs when several particles are released because of a wind
gust, transported in the air into a more or less limited volume and deposited
over a more or less limited area; see Figure 2.5.

In propagation models for airborne plant pathogens and plants, deposit
locations of particles are usually assumed to be independently and identi-
cally drawn under the dispersal kernel. If group dispersal occurs, then the
independence assumption is not valid anymore. To represent group dispersal,
Soubeyrand et al. (2011) resorted to a hierarchical structure of dependence:
at the first stage of the hierarchy, groups are independently dispersed; at the
second stage, particles within each group are dispersed independently but
conditionally on the group transport. The resulting model can be viewed as a
Neyman-Scott point process7 (Illian et al., 2008) with double inhomogeneity:

7 A homogeneous Neyman-Scott point process is obtained by drawing a stationary
Poisson point process, which forms the parent process, and by drawing clus-
ters of daughter points around parents, where the cluster sizes are random and
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(i) an inhomogeneity in the locations of cluster centers and (ii) an inhomo-
geneity in the spread of cluster points (here, a cluster is formed by the deposit
locations of a group of particles released simultaneously by the same source)8.
The model of Soubeyrand et al. (2011) and some of its properties are described
in what follows. One of the properties, namely the concentration of particles,
is not commonly studied in point process theory but is especially relevant in
dispersal studies.

Independent dispersal Group dispersalIndependent dispersalIndependent dispersal Group dispersalIndependent dispersal

Fig. 2.5. Schematic representation of independent and group dispersal from a source
of particles, e.g. an infected plant (black shape) releasing fungal spores (open circles).
Independent dispersal: particles independently released and transported. Group dis-
persal: particles simultaneously released, and settling at different but positively cor-
related locations. The dispersal kernel in each case is represented by the solid curve.

Group dispersal model (GDM)

Consider a single point source of particles located at the origin of the planar
space R2. The deposit location vector Xjn of the n-th particle of group j
(j ∈ {1, . . . , J} and n ∈ {1, . . . , Nj}) is assumed to satisfy

Xjn = Xj +Bjn(ν||Xj ||),

where Xj = E(Xjn | Xj) is the final location vector of the center of group
j, Bjn is a centered Brownian motion describing the relative movement of

the daughter points are scattered independently and with identical distribution
around their respective parents. The Neyman-Scott process is formed by the
daughter points only.

8 The group dispersal model can also be viewed as a doubly stochastic point process
model, also called spatial Cox process (Illian et al., 2008).
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the n-th particle in group j with respect to the group center, ν is a positive
parameter and || · || denotes the Euclidean distance.

The random variables J , Nj , Xj and the random processes {Bjn : n =
1, . . . , Nj} are mutually independent. The number of groups J is Poisson
distributed with mean value λ. The Nj are independently drawn from the
counting distribution pµ,σ2 defined over N with mean and variance parameters
µ and σ2, respectively. The group center locations Xj are independently and
identically drawn from the probability density function (p.d.f.) fXj

: R2 7→ R+

(the consequence of this assumption is the inhomogeneity in the locations
of cluster centers in the Neyman-Scott process). The function fXj can be
characterized by features usually associated with classical dispersal kernels: for
instance, a more or less steep decrease at the origin, a more or less heavy tail,
and a more or less anisotropic shape. The Brownian motions Bjn defined over
R2 are centered, independent and with independent components. They are
stopped at time tj = ν||Xj ||. The distance between the source and the location
Xj is used, up to the scaling parameter ν, as a time surrogate. Thus, the
further a group is transported, the most the particules forming the group are
spread with respect to the group center (the consequence of this assumption
is the inhomogeneity in the spread of cluster points in the Neyman-Scott
process). The value of ν determines the strength of the relative spread from
the group center. It follows that Bjn(ν||Xj ||) follow independent and centered
normal distributions with variance matrices ν||Xj ||I where I is the 2 × 2
identity matrix. Figure 2.6, which shows a simulation of the GDM, clearly
illustrates the existence of groups whose extents increase with distance from
the point source.

Moments and generation of foci

Soubeyrand et al. (2011) specifically studied the ability of the model to gener-
ate secondary foci in a spatio-temporal context, that is to say when the group
dispersal is repeated generation after generation (particles dispersed from a
source become sources from which new particles are dispersed). This charac-
teristic of the GDM was investigated by studying theoretical moments and
analyzing simulated dynamics. Below, we only present the study of moments.

A first understanding of the ability of the GDM to generate multiple foci
was achieved by studying the moments of the number of particles Q(x +
dx) deposited in the infinitesimal surface x + dx centered around x. The
expectation, variance and covariance satisfy:

E{Q(x+ dx)} = λµfXjn
(x)dx

V {Q(x+ dx)} = λ[µfXjn
(x)dx+ (σ2 + µ2 − µ)E{φν,Xj

(x)2}(dx)2]

cov{Q(x1 + dx), Q(x2 + dx)} = λ(σ2 + µ2 − µ)E{φν,Xj (x1)φν,Xj (x2)}(dx)2,

where fXjn
is the probability density function of Xjn, that is to say the

dispersal kernel of particles, which is equal to:
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Fig. 2.6. Simulation of the group dispersal model with a single point source. Left:
conditional density of the deposit location of a particle whose group it belongs to
is unknown given the locations of the group centers. Right: deposit locations of
particles obtained under the density shown on the left; the large dot indicates the
location of the point source.

fXjn
(x) =

∫
R2

fXjn|Xj
(x | y)fXj

(y)dy

=

∫
R2

φν,y(x)fXj
(y)dy,

with φν,y(x) = 1
2πν||y|| exp

(
− (x−y)′(x−y)

2ν||y||

)
, E{φν,Xj

(x)2} =
∫
R2 φν,y(x)2fXj

(y)dy

and E{φν,Xj
(x1)φν,Xj

(x2)} =
∫
R2 φν,y(x1)φν,y(x2)fXj

(y)dy. It has to be
noted that for a counting distribution over N characterized by mean µ > 0
and variance σ2, the quantity σ2 + µ2 − µ is positive; it is zero if and only
if µ = 0 (which implies that σ2 = 0) or (µ, σ) = (1, 0). This implies that the
covariance given above for the GDM is non-negative.

These moments can be used to compare point patterns obtained under
the GDM with µ = 1 and the GDM with µ = 1 and σ = 0, which is an
independent dispersal model (IDM; every group has size exactly equal to
one). The extra-variance and the positive spatial covariance characterizing
the GDM induce the occurrence of aggregates in space, while such aggre-
gates are not expected under the IDM (VIDM{Q(x+ dx)} = λfXjn(x)dx and
covIDM{Q(x1 + dx), Q(x2 + dx)} = 0). These aggregates are at the origin of
secondary foci visible in a spatio-temporal context (i.e. when deposited par-
ticles become sources of particles at the next time step) without resorting to
heavy-tailed dispersal kernels or to spatial heterogeneity.
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Furthest particle and concentration of particles

The distribution of the furthest deposited particle is of interest because it de-
termines the spreading speed (or invasion speed) in a spatio-temporal context:
the more concentrated the particles, the lowest the spreading speed.

Let Rmax denote the distance from the source to the furthest deposited
particle:

Rmax = max{Rjn : j ∈ J , n ∈ Nj},

where Rjn = ||Xjn|| is the distance between the source (at the origin) and
the n-th deposited particle of group j, J = {1, . . . , J} if J > 0 and the empty
set otherwise, and Nj = {1, . . . , Nj} if Nj > 0 and the empty set otherwise.
By convention, if no particle is dispersed (J = 0 or Nj = 0 for all j), then
Rmax = 0.

Under the GDM, the distribution of the distance between the origin and
the furthest deposited particle is zero-inflated and satisfies:

P (Rmax = 0) = exp
[
λ{pµ,σ2(0)− 1}

]
fRmax(r) = λfRmax

j
(r) exp{λ(FRmax

j
(r)− 1)}, ∀r > 0,

where fRmax
j

is the p.d.f. of the distance Rmaxj = max{Rjn : n ∈ Nj} between
the origin and the furthest deposited particle of group j, and FRmax

j
is the

corresponding cumulative distribution function (FRmax
j

(r) = P (Rmaxj = 0) +∫ r
0
fRmax

j
(u)du). The distribution of Rmaxj is zero-inflated and satisfies:

P (Rmaxj = 0) = pµ,σ2(0)

fRmax
j

(r) =

∫
R2

fRmax
j |Xj

(r | x)fXj (x)dx

=

+∞∑
q=1

qpµ,σ2(q)

∫
R2

fRjn|Xj
(r | x)FRjn|Xj

(r | x)q−1fXj
(x)dx, ∀r > 0.

where fRjn|Xj
is the conditional distribution of Rjn given Xj satisfying:

fRjn|Xj
(r | x) = 2r

∫ r2

0

h1(u, x)h2(r2 − u, x)du,

hi(u, x) =
fi(
√
u, x) + fi(−

√
u, x)

2
√
u

, ∀i ∈ {1, 2},

fi(v, x) =
1√

2πν||x||
exp

(
− (v − x(i))2

2ν||x||

)
, ∀i ∈ {1, 2},

with x = (x(1), x(2)) and FRjn|Xj
(r | x) =

∫ r
0
fRjn|Xj

(s | x)ds.
The material provided above allows the analytic study of the probability

that Rmax is larger than a distance r > 0:



34 2 Stochastic geometry applied to particle dispersal studies

P (Rmax ≥ r) =

∫ +∞

r

fRmax(s)ds.

It especially follows that for every GDM and IDM characterized by the same
dispersal kernel for the particles and the same expected number of dispersed
particles λµ, the furthest particle under the GDM has less chance to be at
a distance greater than any r > 0 than the furthest particle under the IDM.
Therefore, the population of particles is expected to be more concentrated
under the GDM than under the IDM. In other words, the average expansion
speed under the GDM is expected to be lower than the average expansion
speed under the IDM.

2.3.2 Estimation

In Mrkvička and Soubeyrand (2015), we proposed an MCMC algorithm for
Neyman-Scott point processes with inhomogeneous intensity of parent points
and inhomogeneous spread of daughter points around their parents. In these
processes, both inhomogeneity are described by parametric functions. The
group dispersal model presented above is a special case of such a process. Our
MCMC algorithm is an adaptation of the algorithm proposed by Mrkvička
et al. (2014) for Neyman-Scott point processes with a single inhomogeneity in
the intensity of parent points. Briefly, the algorithm consists of updating the
process of parent points by using the Birth-Death-Move algorithm described
in Møller and Waagepetersen (2003), and updating the model parameters by
using a Metropolis-Hastings sampler.

2.3.3 Application

Most often, the spread of airborne plant diseases has been studied at the
field, landscape and regional scales (Papäıx et al., 2014; Soubeyrand et al.,
2008b, 2009c). It has been more marginally studied at the host scale as in
Lannou et al. (2008), who quantified autoinfection (autoinfection is defined as
the reinfection of an infected plant by contaminants released by this plant).
Autoinfection largely determines the rate of host colonization by the pathogen
during polycyclic epidemics and, consequently, the development of epidemics
in time and space at larger scales.

In Lannou et al. (2008), we investigated autoinfection for the brown rust
of wheat (Puccinia triticina) that forms lesions on wheat leaves, from which
spores are dispersed, usually by wind (spores are the contaminating particles).
Then, spores that are deposited on wheat leaves (the source leaf itself or other
leaves) can generate new lesions if conditions are favorable to the development
of the disease. Lannou et al. (2008) studied autoinfection for the brown rust of
wheat by observing infected leaves with one mother lesions and the resulting
set of daughter lesions. Figure 2.7 shows one of these leaves and the locations
of all the daughter lesions carried by this leaf. It was checked that this leaf
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was sufficiently far from other infected leaves to reasonably assume that the
observed daughter lesions only resulted from the mother lesion on the same
leaf.

Studying the dispersal at the leaf scale offers the opportunity to directly
observe a point pattern, and not only aggregated data such as those dis-
cussed in Section 2.1.3. Thus, we fitted the group dispersal model9 described
in Section 2.3.1 to the point pattern shown in Figure 2.7. In the model, the
distribution pµ,σ2 of the number of daughter points per parent point was sim-
ply the Poisson distribution with mean µ (and σ2 = µ). the dispersal kernel
fXj for parent points was simply the 2D-exponential dispersal kernel given by
Equation (2.3). In addition, the prior distributions for the parameters were
set to wide uniform distributions.

The point pattern shown in Figure 2.7 is formed by 229 points. The
Mathematica code that was developed being designed to handle point pat-
terns observed in a rectangular window W , we only considered a subset
of the observed point pattern by considering the observation window W =
[−1.80, 1.80] × [−0.22, 0.17] drawn in Figure 2.7. W was chosen such that it
was roughly included in the leaf surface and it contained almost all observed
lesions (224 locations of lesions are within W ). The MCMC algorithm was ap-
plied with 106 iterations, the first 5×104 iterations were discarded as burn-in,
every 10th iteration were used for calculation of posterior characteristics.

Table 2.2 provides posterior characteristics of parameters. Estimates that
are provided must be interpreted with caution. Indeed, in this case study,
dispersal of spores is observed at a small scale and, consequently, our conclu-
sions only concern short-distance dispersal. Thus, parameter estimates only
inform the processes that governs the autoinfection of the leaf. They are not
representative of processes leading to medium- and long-distance dispersal.

Given these restrictions in the interpretation of parameter estimates, the
estimation of β, whose posterior mean is 0.44 and whose 95%-posterior interval
is [0.29,0.69], implies that the mean dispersal distance of group centers is
about 0.22, i.e. about the half of the maximum width of the leaf. Thus, a non-
negligible amount of spores dispersed at the scale of the leaf is lost and/or is
deposited on other leaves, especially the spores dispersed in the x2 direction.
This is corroborated by the fact that the product λµ indicates that about 900
spores that could potentially generate lesions were dispersed at the leaf scale
whereas only 229 led to observed lesions.

The estimation of µ indicates that, at the leaf scale, groups of lesions with
posterior mean size equal to 7.0 are formed. This corroborates the impression

9 In Mrkvička and Soubeyrand (2015), we also fitted an independent dispersal
model to data and we tested the goodness-of-fit using a rank envelope test (Myl-
lymäki et al., 2015; Mrkvička et al., 2015). The null hypothesis was rejected at
the risk level 0.05. We applied the same procedure to assess the fit of the group
dispersal model to data. In this case, the null hypothesis was not rejected.
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given by Figure 2.7 where we can visually detect clusters of points, especially
on the right hand side of the leaf.

The estimation of ν indicates that unidimensional standard deviation√
ν||x|| of the distances between the points of a group and their group center

is about 0.07 at a distance ||x|| = 0.5 from the mother lesion, 0.10 at a distance
||x|| = 1.0, and 0.12 at a distance ||c|| = 1.5 (||x|| is the distance between the
mother lesion and the group center —or parent point). This approximately
coincides with the clusters of points that are guessed on the right hand side
of the leaf on Figure 2.7.
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Fig. 2.7. Locations (open circles and crosses) of brown rust lesions on a wheat
leaf (grey shape). The pathogen lesions were formed after the dispersal of spores
emitted from one mother lesion located at the intersection of the two dashed lines.
The estimation algorithm was applied to the point pattern within the rectangle (open
circles; 224 points), whereas the lesions outside the rectangle (crosses; 5 points) were
not used.

Table 2.2. Estimates of parameters of the group dispersal model fitted to the
locations of pathogen lesions on the plant leaf shown in Figure 2.7.

Parameter β λ µ ν
Posterior mean 0.44 132 7.0 0.010
Posterior median 0.43 127 6.9 0.010
95%-posterior interval [0.29,0.69] [71,237] [3.5,10.6] [0.004,0.015]



2.3 Group dispersal 37

2.3.4 Side topic 1: doubly non-stationary cylinder-based model

Soubeyrand et al. (2014b) propose an alternative and concise way of modeling
group dispersal which allowed theoretical investigation of group dispersal in
fragmented habitat.

In Section 2.3.1, the particles of a group form a cluster of points, the
number of particles in the group is randomly and independently distributed,
and the scatter of the particles of the group increases in expectation with
the average dispersal distance of the group particles. Here, to get a more
concise representation of a group, we propose to model it as a cylinder whose
volume is proportional to the size of the group and whose base area increases
with the dispersal distance of the group center, which is the cylinder center.
This construction leads to a dispersal model that is a doubly nonstationary
cylinder-based model10. Figure 2.8 (left) shows a realization of this model.

For populations studied in ecology and epidemiology, the habitat is often
fragmented (Hanski and Gaggiotti, 2004). Here, we consider and compare
two different habitats: (i) a uniform habitat where all points in space are
equally favorable to the settlement of the population; (ii) a fragmented habitat
modeled by a Boolean model. In case (ii), the Boolean model has to satisfy one
particular property: the space covered by the Boolean model has to include
the location of the source of particles (e.g. a plant which acts like a source of
seeds automatically lies in the plant population habitat). Thus, in case (ii),
the habitat is modeled by a conditional Boolean model. Figure 2.8 (center)
shows a realization of this model.

The group dispersal model is simply the cylinder-based model for the
uniform habitat (Figure 2.8, left) but it is the product of the cylinder-based
model and the Boolean model for the fragmented habitat (Figure 2.8, right).

In Soubeyrand et al. (2014b), we describe the models introduced above
and we derive their properties. These properties concern the first and second
order moments of the random surfaces generated by the models, the proba-
bility of population vanishing and the spatial extent of the dispersal. The two
latter characteristics, which are studied here because of the biological context
underlying our models, are usually not analyzed in stochastic geometry and
led to our original theoretical developments, especially in the case of the frag-
mented habitat. The formula which are provided should allow the study of
the interaction between group dispersal and habitat fragmentation. Thus, in
future work, we expect to compare the vanishing probabilities and the spatial
extents of the product model when the fragmentation of the Boolean model
representing the habitat varies.

10 Such a cylinder-based model can also be viewed as a marked point process where
the point are the cylinder centers and the marks are the volume and the base
area of the cylinder.
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Fig. 2.8. Realizations of the cylinder-based model with source at the origin (left),
realization of the conditional Boolean model (center) and product of the two previous
realizations (right), which illustrates the group dispersal model in a fragmented
habitat.

2.3.5 Side topic 2: group dispersal viewed from an evolutionary
perspective

The question Why to disperse? has been extensively investigated from an evo-
lutionary perspective, and these investigations generally established the sig-
nificant advantage of the ability to disperse (Ronce, 2007; Rousset, 2012; Star-
rfelt and Kokko, 2012; Travis and Dytham, 2002). Beyond this first question,
the amazing diversity of dispersal mechanisms that animals, plants, fungi,
peat mosses and other organisms have developed leads to a second question:
How to disperse? In Soubeyrand et al. (2015), we enrich the modeling frame-
work presented in Section 2.3.1 to study the evolution of dispersal in asexual
populations where reproducing individuals release particles and can adopt
(by mutation) three strategies: independent movements of all particles, clump
dispersal (i.e. clumps of particles attached together and settling at the same
location), or group dispersal (i.e. groups of particles simultaneously released
and settling at different but positively correlated locations). Using simula-
tion experiments, we show (i) how the spatial limits and fragmentation of
the species habitat shape the frequencies of the three strategies in the pop-
ulation and the sizes of groups and clumps, and (ii) the co-existence of the
independent, clump and group dispersal strategies at the stationary state of
the population dynamics.

2.4 Dispersal of phoma at the landscape scale

Current modeling of inoculum transmission from a cropping season to the
following one often relies on the extrapolation of kernels estimated on data
at short distances from punctual sources, because data collected at larger
distances are scarce. In Bousset et al. (2015), we estimated the dispersal ker-
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nel of Leptosphaeria maculans11 ascospores from stubble left after harvest
in the summer previous to newly sown oilseed rape fields. The estimation
was based on data corresponding to counts of lesions observed in autumn
during two successive seasons. In the model built to analyze these data, (i)
source strengths are described by a log-Gaussian spatial process limited to
source fields, (ii) infection potential in the following season is described by
a convolution of source strengths and a power-exponential dispersal kernel,
and (iii) data are assumed to follow counting distributions conditional on the
log-Gaussian spatial process (for data collected in source fields) and on the
convolution (for data collected in the target fields). Two data sets were col-
lected from real farmer fields in 2009–2010 and in 2011–2012, respectively. We
applied the Bayesian approach for model selection and parameter estimation.
We obtained fat-tail kernels for both data sets. This estimation is the first
from data acquired over distances of 0 to 1000 m, using several non-punctual
inoculum sources. It opens the prospect of refining the existing simulators and
developing disease risk maps.

2.4.1 Data

We observed two transmissions of phoma stem canker, from 2009 to 2010 and
from 2011 to 2012, in two locations near Le Rheu (Brittany, France). For each
transmission, we assessed disease intensity both on source fields and on target
fields. A subset of the existing fields was observed, and observation points
in observed fields were approximately regularly scattered to cover the whole
fields (the sampling was higher near borders of some target fields in contact
with source fields). Disease intensity was quantified by counting the number
of phoma leaf spots seen within 1 minute on a 1m2 rectangle with dimension
0.5×2m and covered by oilseed rape. Data are represented across space in
Figure 2.9.

2.4.2 Model

To infer the dispersal of the spores of Leptosphaeria maculans, we constructed
a mechanistic-statistical model involving a mechanistic model of the dispersal
and a probabilistic model of the observation processes. The following para-
graphs present each of these two components.

Mechanistic model

Here, we introduce the two following model components: the strengths of
pathogen sources in source fields and the infection potential that pathogen
sources generate in target fields.

11 Leptosphaeria maculans is a fungus infecting oilseed rape plants and causing the
disease called phoma stem canker.
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Fig. 2.9. Observed measurements of disease intensities (count of lesions per square
meter) in source plots and target plots for the 2009–2010 transmission (top) and
the 2011–2012 transmission (bottom). Circles represent sampling points, which are
colored with respect to disease intensity. Disease has not been quantified in the fields
containing no circles.
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The source strengths in source fields are modeled by a log-Gaussian sta-
tionary spatial process ΛS with an exponential power auto-covariance function
(Yaglom, 1987, pp. 364-365); the subscript S means source. Thus, for a set of
n sites y1, . . . , yn located in source fields,

{logΛS(y1), . . . , logΛS(yn)} ∼ Normal{(µ, . . . , µ), Σ}

where µ ∈ R is the mean parameter of the log-source strengths, Σ is their
variance-covariance matrix whose element (j, j′) is equal to σ2

1 exp(−σ2||yj −
yj′ ||σ3), σ2

1 , σ2 and σ3 are the variance parameter, the range parameter and
the smoothness parameter of the covariance function, respectively, and || · ||
is the Euclidean distance in the space R2.

The infection potential, that gives a measure of the risk of infection in
target fields, is modeled by a convolution ΛT between the source strengths ΛS
and the exponential-power dispersal kernel f ; the subscript T means target.
Thus, for any site x located in a target field,

ΛT (x) =

∫
R2

ΛS(y)f(x− y)dy

f(x− y) =
β2

β2
1Γ (2/β2)

exp

{
−
(
||x− y||
β1

)β2
}
,

where ΛS(y)f(x−y) represents the contribution of the pathogen source located
at site y to the potential infection at site x, and where β1 and β2 are the scale
and shape parameters of the dispersal kernel.

Models of the observation processes

Disease intensities in source fields noted YS,i, i = 1, . . . , nS (i.e. counts of
phoma leaf spots seen within 1min on 1m2), are assumed to be drawn un-
der independent Poisson distributions with means proportional to the source
strengths at sites xS,1, . . . , xS,nS

where the intensities were measured:

YS,i ∼
indep.

Poisson{α1ΛS(xS,i)}

where α1 > 0 is a proportionality parameter. This model is obtained by
assuming that phoma leaf spots form a log-normal spatial Cox process and
by collecting counting data in small sampling windows instead of observing
the points.

Disease intensities in target fields noted YT,i, i = 1, . . . , nT (which are also
counts of phoma leaf spots seen within 1min on 1m2), are assumed to be drawn
under independent negative-binomial distributions with means proportional
to the infection potentials at sites xT,1, . . . , xT,nT

where the intensities were
measured:

YT,i ∼
indep.

Negative-binomial{α2ΛT (xT,i), θ}
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where α2 > 0 is a proportionality parameter and θ > 0 is an over-dispersion
parameter. Here, the negative-binomial distribution is used to counterbalance
the regularization due to the convolution defining ΛT . Indeed, for disease
intensities in source fields, the combination of the log-Gaussian randomness
in ΛS and the Poisson randomness leads to a given level of stochasticity. In
contrast, ΛT , which is defined as a convolution between ΛS and K, has a
lower level of variability than ΛS . To counterbalance this, we used a negative
binomial distribution whose realizations are more variable than those of a
Poisson distribution with the same mean12.

2.4.3 Estimation

The model parameters and latent variables were estimated via a MCMC algo-
rithm with Metropolis-Hastings sampler. The vector of unknown parameters
is (µ, σ1, σ2, σ3, β1, β2, α1, α2, θ) (it has to be noted that we arbitrarily fixed
α1 = 1 because α1 and α2 are not both identifiable.). The latent variables
correspond to values of ΛS at the nodes of a regular square grid limited to
source fields. This discretization was performed to handle a finite vector of
latent variables in the MCMC and to easily approximate the convolution ΛT .
The MCMC algorithm that we developed was roughly similar to those devel-
oped by Diggle et al. (1998) and Bourgeois et al. (2012) for hierarchical spatial
models with latent Gaussian vectors. For each MCMC algorithm that we ran,
106 iterations were performed, the first 50000 iterations were discarded for the
burn-in, and the chain was sub-sampled every 500 iterations to get a posterior
sample.

2.4.4 Results

Posterior estimates of the dispersal kernel for the two data sets are shown
in Figure 2.10. Both kernel estimates have similar values at distances up to
100m. At larger distances, values issued from the 2010 kernel are higher than
values from the 2012 kernel. Figure 2.10 also shows examples of kernels used
in Lô-Pelzer et al. (2010) for different wind speeds, selected in the range of
observed hourly wind velocities at Le Rheu in autumn 2010 and 2012. The
latter kernels tend to underestimate dispersal at short distances for increasing
wind speeds. On the contrary, for wind speed from 1 to 20m/s, kernels fall
between the two estimated in our study.

12 This probabilistic trick is a parsimonious manner to obtain the same level of
stochasticity in source and target fields. Alternative approaches related to biolog-
ical processes are discussed in Bousset et al. (2015).
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Fig. 2.10. Posterior median of the value of the two dimensional dispersal kernel at
increasing distances for the 2009–2010 dataset (solid black line) and the 2011–2012
dataset (dashed black line). Dotted lines are the corresponding posterior quantiles
of levels 0.025, 0.1, 0.25, 0.75, 0.9 and 0.975, from bottom to top lines. Red lines are
examples of kernels used in the simulator of Lô-Pelzer et al. (2010) with wind speed
equal to 0.1, 1, 5 and 20 m/s (indicated on the right of red lines).

2.5 Spatio-temporal dynamics of powdery mildew at the
metapopulation scale

In Finland, A.-L. Laine leads a large-scale survey on the yearly distribution
of the powdery mildew Podosphaera plantaginis which infects its host plant,
Plantago lanceolata, in a metapopulation setting. The presence of this fungal
pathogen has been recorded annually in approximately 4000 host popula-
tions, which are most often meadows, across the Åland archipelago, an area
of 50×70km in southwest Finland; see Figure 2.11.

In Soubeyrand et al. (2009c), we combined mechanistic and statistical
approaches to reconstruct the continuous-time infection dynamics of the pow-
dery mildew based on discrete-time occurrence data. The model takes into
account the main features of the dynamics of the pathogen in the Åland
archipelago. Specifically, the model takes into account the strong seasonality
of the dynamics (i.e. high extinction rate of local pathogen populations during
winter, and epidemic expansion in summer). A Bayesian inference framework
based on an MCMC algorithm was proposed to infer latent variables (i.e. infec-
tion times of meadows) and model parameters (e.g. the dispersal parameters
and the effects of covariates on pathogen survival and meadow infection).
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Fig. 2.11. Map of the Åland Islands and the populations of Plantago lanceolata
(black dots).

2.5.1 Data

The powdery mildew Podosphaera plantaginis is an obligate pathogen of Plan-
tago lanceolata in the Åland Islands. The host is a perennial herb. Within
host populations, initial pathogen foci are established from resting spores or
mycelium that have over-wintered in the dormant buds of the host plant. Al-
ternatively, a spore may colonize the host population from surrounding pop-
ulations. Some six to eight clonally produced generations follow one another
in quick succession, often leading to a local epidemic with a substantial frac-
tion of the host individuals being infected by late summer (Ovaskainen and
Laine, 2006). Sexually produced resting spores appear towards the end of the
growing season in August–September. During the dormancy from September
to May, the pathogen population declines greatly as most host plants die back
to rootstock.

Podosphaera plantaginis persists regionally as a metapopulation with fre-
quent local extinctions and re-colonizations (Laine and Hanski, 2006). Infec-
tion prevalence has remained low, below 7%, yet there is evidence of on-going
coevolution, with pathogen populations evolving to infect local co-occurring
host plants more efficiently, in comparison with plants occurring elsewhere in
the set of meadows (Laine, 2005, 2008).

There are altogether 4108 local populations of P. lanceolata in our data
base, of which ca 3400 have been surveyed for the presence of the fungus
in every year in 2001-06 (the populations that have not been surveyed are
mostly very small or occur in peripheral areas). The survey takes place in
early September, when the expansion of the local epidemic has terminated
(Laine and Hanski, 2006). When the fungus is detected in the survey, a leaf



2.5 Spatio-temporal dynamics of powdery mildew at the metapopulation scale 45

sample is collected for subsequent microscopic examination to confirm the
identification. However, not all infected populations are likely to be detected.
Based on thorough control surveys of a subset of the meadows that have
been carried out every summer, we estimate that the probability of the field
assistants missing an infection on an infected meadow is 6% (i.e. the diagnostic
test sensitivity is 94%). This probability of misclassification is included in the
model described in the next section.

Environmental variables characterizing each host population (habitat patch)
were collected and were introduced in the model as explanatory variables.

2.5.2 Model

To infer the key processes of the host-pathogen interaction during one ‘dormancy-
growth season’ cycle from patterns of occurrence, we constructed a mechanistic-
statistical model involving a model of the dynamics and a model of the obser-
vation process. Input data to the model includes the covariates characterizing
host populations and evoked in the previous section, and the spatial occupancy
patterns of the pathogen observed in the beginning of dormancy (initial state)
and at the end of the growing season (final state).

In the mechanistic part of the model, survival and extinction are modeled
conditionally on the covariates and the health status of host populations in
the beginning of dormancy. Colonizations are modeled conditionally on the
covariates, on dispersal characteristics of the pathogen, and on the status
of host populations in the beginning of the growing season. Colonizations are
determined with an infection potential function, which varies in space and time
according to infectiousness and spatial pattern of infected host populations.

The statistical part of the model makes the link between the annual dy-
namics and the occupancy patterns as determined in the beginning of dor-
mancy and at the end of the growing season. This model component enabled
us to handle the missed infections, the incomplete sampling and the transfor-
mation of pathogen abundance into a binary measure.

Notation

Consider a host-pathogen system comprising a metapopulation. Host popula-
tions occur in n distinct habitat patches with centroids xi (i ∈ I = {1, . . . , n}).
ai denotes the area covered by host individuals in patch i.

We first focus on spatio-temporal dynamics of the pathogen during one
year, which is assumed to consist of two successive periods: the dormancy
period and the growing season period. Without loss of generality, we assume
that dormancy occurs during the time interval [−1, 0) while the growing season
occurs during the interval [0, 1). The initial time t = −1 is just after the end
of the previous growing season, while time t = 1 corresponds to the beginning
of the next season.
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The binary variable Yit denotes the health status of population i at time t:
Yit = 0 if i is susceptible and Yit = 1 if it is infected. Healthy populations
are immune during the dormancy and susceptible within the growing season,
while infected populations are infectious only during the growing season. In
addition, like in Section 2.1.2 the degrees of susceptibility and infectiousness
depend on individual characteristics and time; see below.

The presence of the pathogen is assessed at the population level at times
t = −1 and t = 1 as Yi,−1 and Yi1. Given that sampling is not complete (there
are some populations whose health status is not observed) and that infections
are not always detected, we introduce the observation variables Y obsi,−1 and

Y obsi1 with a value of zero if the meadow is observed as healthy, one if it is
observed infected and NA if it is not sampled. A population that is observed
to be healthy can be actually infected.

The infection times Ti (i ∈ I) denote the times of initiation of local epi-
demics in the year under consideration. As a local epidemic can only occur
during the growing season, Ti ≥ 0. We assume that the pathogen survived in
population i during the dormancy if and only if Ti = 0. In the case of local
epidemics not due to survival of the pathogen in patch i the infection time
is the colonization time. By convention, we set Ti ≥ 1 if population i is still
susceptible at time t = 1. Figure 2.12 gives an example of temporal evolution
in the number of infected populations during the dormancy and the growing
season.

The set of infection times is denoted by T = {Ti : i ∈ I} and the sets of
observed initial and final health statuses are denoted by Yobs

−1 = {Y obsi,−1 : i ∈ I}
and Yobs

1 = {Y obsi1 : i ∈ I}, respectively.

Mechanistic model

In the model the pathogen survives in patch i with probability bis(Y
obs
i,−1),

which depends on individual characteristics encoded in bi ∈ [0, 1] and on
Y obsi,−1 ∈ {0, 1, NA}. bi gives the conditional probability of survival given that
patch i was infected in the beginning of dormancy. The probability bi was
specified as a function of the observed covariates that are expected to be linked
to pathogen survival: bi = logit−1(BTi β) where Bi is a vector of covariates
and β is a vector of parameters. Function s deals with misclassification and
incompleteness of the observation process at time t = −1. It depends on
observation–parameters which are supposed to be known (or assessed with
additional data)13.

The spread of the pathogen during the growing season was modeled as
a spatio-temporal Poisson point process (Illian et al., 2008), as proposed in

13 The function s is specified in an appendix of Soubeyrand et al. (2009c). It depends
on the following observation–parameters: the probability that a population is
observed as infected at time t = −1 if it is sampled; and the probability that a
population is infected at time t = −1 given it is observed as non-infected.
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Fig. 2.12. Temporal evolution of the number of infected populations during the
dormancy and the growing season corresponding to intervals [-1,0) and [0,1), re-
spectively. Labels i = 1, . . . , 7 are used to denote the populations and Ti is the
infection time of population i. In this example, four populations (i = 1, 2, 3, 4) were
infected in the beginning of dormancy but the pathogen survived only in popula-
tions 1 and 2. During the growing season, populations 5, 6 and 7 became colonized,
population 4 was recolonized and population 3 remained susceptible.

Section 2.1.2 where the Poisson specification was introduced14. In this process,
point (t, x) specifies a time and a location at which the numbers of dispersing
incoming pathogen are large enough to potentially initiate a local epidemic in
a susceptible population with a standard degree of susceptibility. Thus, each
point stands for a potential colonization event.

The point process is governed by an intensity function λ quantifying the
risk of infection at each space-time location. This intensity, called here infec-
tion potential, is generated by the already infected populations and it therefore
varies in time and space with the number, the spatial locations and the infec-
tiousness of these populations. The expression of λ at time t and location x
is given by:

λ(t, x) =
∑
j∈It

cjgj(t− Tj)f(x, xj), (2.14)

where It = {j ∈ I : Tj < t} is the set of populations infected before time t; cj
encodes characteristics of population j such as its physiological state and fea-
tures of the surrounding habitat, which are expected to partly determine the
infectiousness of j; gj is a parametric disease progress function15, which gives

14 More rigourously, the point process incorporated in the model is a piecewise
spatio-temporal Poisson point process where the pieces are defined as the pe-
riods of time between the colonization events.

15 The function gj was specified as follows: gj(t) = min{t2, ωaj}1(t ≥ 0), where ω
is a positive parameter. The threshold ωaj takes into account possible saturation
effects in small populations.
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the shape of the pathogen growth within population j; f is a dispersal func-
tion, which models pathogen dispersal as a function of the source location xj
and the location of the receiving population x. For f , we used the anisotropic
exponential kernel (see Equation (2.7)) specified with von Mises anisotropy
functions. The product cjgj(t − Tj) specifies the degree of infectiousness of
population j at time t. In the beginning of the growing season, just after time
zero, the infection potential is generated only by those populations in which
the pathogen survived during the dormancy.

An uninfected population i is colonized during the growing season if a point
of the Poisson point process is deposited in i and it succeeds in initiating a
local epidemic. The intensity of points deposited in i at time t is given by
the product aiλ(t, xi) of what is considered as the effective capture area by
the instantaneous local infection potential. Any deposited point is assumed
to initiate a local epidemic with probability di, which reflects the degree of
susceptibility of i and encodes individual characteristics such as local climatic
conditions.

Quantities cj and di always appear in the model as the product cjdi.
They can be jointly modeled as a function of observed covariates that are
expected to be linked to infectiousness and susceptibility: cjdi = exp(CTj γ +

DT
i δ), where Cj and Di are vectors of covariates, and γ and δ are vectors of

parameters.

Models of the observation processes

The observed final health status Y obsi1 is assumed to follow a multinomial
distribution in the set of values {0, 1, NA}. The probability that Y obsi1 = NA is
the same for all populations and, therefore, is reduced to a single parameter.
The probabilities that Y obsi1 = 0 and that Y obsi1 = 1 are assumed to depend
on the actual health status Yi1 and on observation–parameters related to
misclassification and incompleteness in the observation process16.

2.5.3 Estimation

In the application, the input data are the observed health statuses Y obsi,−1 and

Y obsi1 (for years 2002 to 2006), the vectors of covariates Bi, Ci and Di, and the
observation–parameters. Based on these data and the model presented above,
we inferred the infection times T and the vector of unknown parameters θ,
which includes the parameters associated with the covariates, the parameter

16 The conditional distribution of Y obsi1 given Yi1 is specified in an appendix of
Soubeyrand et al. (2009c). It depends on the following observation–parameters:
the probability that a population is observed as infected at time t = 1 if it is
sampled; and the probability that a population is infected at time t = 1 given it
is observed as non-infected. These probabilities are supposed to be known (they
were assessed with additional data).
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of the growth functions gj and the dispersal parameters. The inference was
carried out in the Bayesian framework with an MCMC algorithm including
Metropolis-Hastings updates.

2.5.4 Results

Survival probability

Survival during dormancy (i.e. over-wintering) cannot be observed directly,
but our inference approach allows us to estimate this measure of the host-
pathogen interaction. Indeed, by using the posterior distribution of the in-
fection times, we can estimate the posterior probability that the pathogen
survived during dormancy in any population i and year k ∈ {2002 . . . , 2006},
and we can express its average, say Ŝi, over time.

Figure 2.13 (left) shows Ŝi for all populations. It is apparent that there
are regions of high survival probability especially near the coastline (where
climate conditions are relatively mild). In other coastal regions, the survival
probability has an intermediate value, whereas in the inland areas the survival
probability is mostly low.
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Fig. 2.13. Posterior estimates Ŝi and Êi of the survival probability during dormancy
(left) and the encounter intensity during the growing season (right), respectively.
Redder and taller the bar, higher the estimate. A black dot without any bar indicates
a host population in which Ŝi = 0 and Êi = 0.

Encounter intensity

The encounter intensity is a quantitative measure of the host-pathogen inter-
action during the growing season. We defined it for population i and year k
as the integral over time of the disease progress function:

Eik =

∫ 1

0

gik(t− Tik)dt.
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The motivation for this choice is that gik(t−Tik) measures the spatial extent
of the pathogen within population i at time t. This instantaneous encounter
intensity is integrated over the growing season [0, 1] to account for temporal
variation in encounter. The encounter intensity Ei for population i during
the entire study period is the sum of the annual encounter intensities: Ei =∑2006
k=2002Eik.

Figure 2.13 (right) shows Êi for all populations. This map is rather similar
to the one displaying the survival probabilities, but more populations have
positive encounter intensities (more bars in the map), the spatial pattern is
smoother, and the values are greater in the inland areas than in the case of
survival probabilities. These features are obviously due to dispersal of the
pathogen during the growing season.

Dispersal is quantified in the model by the dispersal function f . Figure 2.14
shows the posterior median of the dispersal function. The mean dispersal
distance has the posterior median of 0.86 km and the 95% posterior interval
of [0.64,1.18]. Furthermore, it is apparent that dispersal is oriented towards
the East / South-East corresponding to the main wind direction in the Åland
archipelago.
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Fig. 2.14. Posterior median of the dispersal function h. Each contour line is a curve
of constant density (0.05, 0.005 and 0.0005). The unit of the axes is the kilometer.

Effects of covariates

Table 2.3 shows the effects of covariates used to characterize survival, infec-
tiousness and receptivity. Significant effects are those with stars and high mean
squares. The probability of survival is particularly decreased for populations
which are far from the shoreline and dry. The infectiousness is particularly
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large for populations far from the shoreline, adjacent to roads and shady. The
receptivity is increased for populations adjacent to roads and decreased for
dry populations. It has to be noted that the estimated receptivity does not
fluctuate as much as the estimated survival and infectiousness (mean squares
for effects linked with receptivity are much smaller than those linked with
survival and infectiousness).

Variable Survival Infectiousness Receptivity

P. lanceolata coverage at t=−1 +∗∗∗ (0.00)
Distance to shoreline −∗∗∗ (0.71) +∗∗∗ (0.47) − (0.007)
Patch shadiness − (0.01) +∗∗∗ (0.21) − (0.010)
Dry-hosts proportion at t=−1 −∗ (0.39)
Dry-hosts proportion at t=1 + (0.06) −∗∗∗ (0.065)
Open-habitat proportion −∗∗ (0.17) + (0.04) −∗∗ (0.026)
Road presence −∗∗ (0.12) +∗∗∗ (0.30) +∗∗∗ (0.070)

Table 2.3. Effects of variables used in vectors Bi, Cj and Di corresponding to
survival, infectiousness and receptivity, respectively. For each effect, the sign (+ or
−) of the posterior median is given together with the level of the posterior probability
that the effect has the sign of the posterior median (one star: less than 0.05, two
stars: less than 0.005; three stars: less than 0.0005). The posterior median of the
mean square of each effect is given between parentheses; it measures the variability
due to each effect.

Regions of temporal stability

Based on an analysis not shown here (but presented in Soubeyrand et al.,
2009c), there is a high turnover in the infection of meadows: every year, dur-
ing the dormancy period, there is a significant shuffling of the pathogen pop-
ulations. However, there may be regions in which the pathogen has a high
chance of surviving from one year to another. Similarly, there may be regions
in which the encounter intensity is high every year. We searched for such sta-
bility regions which are shown by Figure 2.13. As expected, the regions of
stability are located in the coastal regions. Most areas of high stability for
survival and encounter coincide, but the overlap is not complete.

Thus, we were able to identify the regions in the study area where over-
wintering (which cannot be observed directly) has been most successful. These
over-wintering sites represent foci that initiate local epidemics during the
growing season. There is striking heterogeneity at the regional scale in both
over-wintering success of the pathogen and in the encounter intensity between
the host and the pathogen. Such heterogeneity has profound implications
for the coevolutionary dynamics of the interaction. Specifically, the regions
pointed out by Figure 2.13 could be hotspots for coevolution.
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10 km 10 km

Fig. 2.15. Regions covered by stability disks (SD) of radius 1 km (black), 2 km
(black and dark grey) and 3 km (black and grey). Left: stability for survival. Right:
stability for encounter. A stability disk is a disk in which survival (or encounter)
was high during the five-years study period. Here, survival (or encounter) is neither
considered at the scale of the meadow nor at the scale of the metapopulation, but
at an intermediate scale.



3

Genetic-space-time modeling and inference for
epidemics

Author’s references: Morelli et al. (2012), Mollentze et al. (2014), Soubeyrand
(2016), Valdazo-González et al. (2015).

Viruses can cause human, animal and plant epidemics of high impact in
developing and developed countries alike. For instance, hepatitis E caused
57,000 deaths in 2010 (Lozano et al., 2012). During the foot-and-mouth out-
break in Great Britain in 2001, some 6 million animals were culled (Anderson
et al., 1996; Haydon et al., 2004). On the global scale and over three decades,
the overall cost of sharka (infecting trees of the genus Prunus) was estimated
to exceed 10 billion euros (Cambra et al., 2006).

In order to minimize these social, environmental and economic costs, we
need to most effectively control infectious diseases and thus to better under-
stand how pathogens spread within host populations, yet this is something we
know remarkably little about. Identifying transmission links of an infectious
disease through a host population is critical to understanding its epidemiol-
ogy and informing measures for its control. Infected hosts close together in
their locations and timing are often thought to be linked, but timing and
locations alone are usually consistent with many different scenarios of who in-
fected whom. To infer more reliably who-transmitted-to-whom over the course
of disease outbreaks, pathogen genomic data have been combined with spatial
and/or temporal data (Jombart et al., 2014; Hall et al., 2015; Lau et al., 2015;
Mollentze et al., 2014; Morelli et al., 2012; Ypma et al., 2012, 2013). However,
the manner in which these data have to be combined remains a modeling and
statistical challenge today.

One of the approaches recently proposed is based on an extension of
stochastic Susceptible-Exposed-Infectious-Removed (SEIR) models. It com-
bines heterogeneous and multi-scale processes and data: it links the epidemio-
logical scale —or host population(s) scale— and the micro-evolutionary scale
—or pathogen genome scale. Section 3.1 presents the genetic-space-time model
that we developed and that combines (i) an individual-based, spatial, semi-
Markov SEIR model for the spatio-temporal dynamics of the pathogen, and
(ii) a Markovian evolutionary model for the temporal evolution of genetic se-
quences of the pathogen. The resulting model is a state-space model including
latent vectors of high dimension. Section 3.2 describes how model parameters
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and latent variables were estimated in the Bayesian framework via approxi-
mate MCMC algorithms. Section 3.3 presents simulation studies assessing the
performance of the approach and real case studies illustrating the application
of the approach to foot-and-mouth outbreaks and a rabies endemic dynamic.
A focus is given on the estimation of who infected whom.

3.1 Joint modeling of epidemiological and
micro-evolutionary dynamics

The genetic-space-time SEIR model, presented below in Subsection 3.1.6, is a
combination of a semi-Markov epidemic model and a Markovian evolutionary
model. The following subsections show how these submodels and the resulting
genetic-space-time SEIR model are constructed.

3.1.1 Discrete-state, continuous-time Markovian SEIR model

Here, we consider a classical SEIR model describing the temporal dynamics of
numbers of susceptible, exposed, infectious and removed individuals in a pop-
ulation affected by a pathogen. Time is viewed as a continuous variable. Let
S(t), E(t), I(t) and R(t) in N respectively denote the numbers of susceptible,
exposed, infectious and removed individuals at time t ≥ 0. The sum of these
quantities is equal to the instantaneous total size of the population T(t) ∈ N,
i.e. S(t) + E(t) + I(t) + R(t) = T(t) for any time t ≥ 0.

In general, many different events can cause a change in the population
pattern (S(t),E(t), I(t),R(t)), for instance the birth and death of susceptibles,
the infection of susceptibles, the death of exposed individuals, the end of
exposed stage (coinciding with the beginning of the infectious stage), the
death in infectious individuals and the end of infectious stage (coinciding
with the beginning of removed stage).

Here, we consider only three possible events, namely infection, end of ex-
posed stage and end of infectious stage. Corresponding transition rates are
provided in Table 3.1. In this model, the risk of infection is a combination
of a basic risk, whose rate is α0S(t), and an endogenous risk, whose rate
α1S(t)I(t)/T(t) is proportional to the number of infectious individuals in the
population of interest. The basic risk may correspond to exogenous pathogen
sources. For instance, in the case of zoonoses (i.e. diseases that can be trans-
mitted from animals to humans) if the population of interest is the set of
humans, the basic risk may correspond to animals infecting humans.

3.1.2 Spatial extension

Now, consider a space decomposed into n ∈ N∗ districts. In each district
k ∈ {1, . . . , n}, the size Tk(t) of the resident population at time t ≥ 0 is the
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Table 3.1. Possible events and corresponding transition rates for the discrete-state,
continuous-time Markovian SEIR model.

Description Event Rate

Infection S→ S− 1 & E→ E + 1 α0S + α1SI/T
End of exposed stage E→ E− 1 & I→ I + 1 βE
End of infectious stage I→ I− 1 & R→ R + 1 δI

sum of local numbers of susceptible, exposed, infectious and removed indi-
viduals denoted by Sk(t), Ek(t), Ik(t) and Rk(t), respectively. By assuming
that contacts between individuals of different districts are possible, the local
risk of infection is a combination of a basic risk whose rate is α0Sk(t), a local
endogenous risk whose rate is α1Sk(t)Ik(t)/Tk(t), and a distant endogenous
risk whose rate is α1Sk(t)

∑
j 6=k wkjIj(t)/Tj(t). In the latter rate, the weight

wkj is a measure of the intensity of contacts between individuals of districts k
and j. By convention, the intensity of contacts between individuals residing in
the same district is equal to one. The spatial, discrete-state, continuous-time
Markovian SEIR model considered in this section is defined by events and
rates provided in Table 3.2. It has to be noted that under this model the sizes
Tk of district subpopulations are constant across time.

Table 3.2. Possible events and corresponding transition rates for the spatial,
discrete-state, continuous-time Markovian SEIR model.

Description Event Rate

Infection Sk → Sk − 1 & Ek → Ek + 1 α0Sk + α1SkIk/Tk

+α1Sk
∑
j 6=k wkjIj/Tj

End of exposed stage Ek → Ek − 1 & Ik → Ik + 1 βEk
End of infectious stage Ik → Ik − 1 & Rk → Rk + 1 δIk

3.1.3 Particular case: individual-based version of the model

Now, let us consider a particular case of the previous model: assume that
for all k ∈ {1, . . . , n}, the size Tk(t) ≡ 1. Thus, districts are replaced by
single individuals, and the model becomes an individual-based model where
the dynamics of the epidemics is modeled at the individual resolution. In
addition, values of Sk(t), Ek(t), Ik(t) and Rk(t) are in {0, 1} and their sum is
equal to one whatever t. By assuming that each individual k ∈ {1, . . . , n} is
located at xk in the planar space R2, events and rates shown in Table 3.2 can
be re-written as in Table 3.3. The location xk can be viewed as the central
or main location of k. We can see in Table 3.3 that the local endogenous risk
disappeared from the expression of the rate of infection since a susceptible



56 3 Genetic-space-time modeling and inference for epidemics

individual cannot infects himself (another justification is that Sk(t)Ik(t) = 0,
∀t ≥ 0). Moreover, the rate corresponding to the distant endogenous risk is
now written α1

∑
j 6=k Ijw(xj − xk) where w is a dispersal kernel whose value

depends on the relative locations of individuals k and j. We specified w as
a power-exponential kernel (already encountered in Chapter 2) parametrized
by α2 = (α2,1, α2,2) and satisfying, for all x ∈ R2:

w(x) =
α2,2

2π(α2,1)2Γ
(

2
α2,2

) exp

{
−
(
||x||
α2,1

)α2,2
}
, (3.1)

where ||x|| is the Euclidean distance between the origin of the planar space
and x. Thus, the measure of the intensity of contact between individuals k
and j decreases with the distance separating the central locations of k and j.

Table 3.3. Possible events and corresponding transition rates for the individual-
based, spatial, discrete-state, continuous-time Markovian SEIR model.

Description Event Rate

Infection Sk : 1→ 0 & Ek : 0→ 1 α0 + α1

∑
j 6=k Ijw(xj − xk)

End of exposed stage Ek : 1→ 0 & Ik : 0→ 1 β
End of infectious stage Ik : 1→ 0 & Rk : 0→ 1 δ

3.1.4 Semi-Markov extension of the individual-based model

In the Markovian model presented in the previous subsection, the times spent
by an individual in exposed and infectious stages are exponentially distributed.
Depending on the context, this may be viewed as an unrealistic assumption.
For instance, the exposed duration, that corresponds to a latency or incu-
bation duration, is usually not exponentially distributed but has a distri-
bution with a mode away from zero (e.g. see Hampson et al., 2009). Semi-
Markov models (Barbu and Limnios, 2008) offer a framework to handle non-
exponential durations in some of the possible states. Thus, in this subsection,
we introduce a semi-Markov model where durations in the exposed and infec-
tious stages are independently drawn under gamma distributions (see Table
3.4). The draws are also independent from the duration in the susceptible
stage.

3.1.5 Markovian evolutionary model for a pathogen sequence

Now, suppose that the pathogen under consideration is an RNA virus that can
evolve along time. More specifically, we suppose that mutations can occur at s
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Table 3.4. Possible events and corresponding transition rates or distributions for the
individual-based, spatial, discrete-state, continuous-time, semi-Markov SEIR model.

Description Event Rate Distribution

Infection Sk : 1→ 0 & Ek : 0→ 1 α0 + α1

∑
j 6=k Ijw(xj − xk)

End of exposed stage Ek : 1→ 0 & Ik : 0→ 1 Γ (β1, β2)
End of infectious stage Ik : 1→ 0 & Rk : 0→ 1 Γ (δ1, δ2)

sites of the viral sequence between the four possible nucleobases that are ade-
nine (A), cytosine (C), guanine (G) and uracil (U). We assume that mutations
in different sites are independent but mutation rates vary as functions of the
current nucleobases and the substituting nucleobases as in the 3-parameters
Kimura substitution model (Kimura, 1981). Here, mutation and substitution
are synonyms. Thus, at the s sites of the sequence under mutation, the muta-
tion processes follow independent, discrete-state, continuous-time Markovian
models that are defined by events and rates provided in Table 3.5.

Table 3.5. Possible events and corresponding substitution rates for the Markovian
evolutionary model. Letters A, C, G and U denotes nucleobases adenine, cytosine,
guanine and thymine, respectively.

Description Event Rate

Transition A→G or G→A or C→U or U→C µ1

Transversion of type 1 A→U or U→A or C→G or G→C µ2

Transversion of type 2 A→C or C→A or G→U or U→G µ3

Under this setting, the expected proportions of transitions, type-1 transver-
sions, type-2 transversions and unchanged nucleobases over an evolutionary
time lag ∆ separating two sequences are:

ρ = (ρ1, ρ2, ρ3, ρ4)

=
1

4

(
1− e1 − e2 + e3, 1− e1 + e2 − e3, 1 + e1 − e2 − e3, 1 + e1 + e2 + e3

)
,

where e1 = exp{−2(µ1 +µ2)∆}, e2 = exp{−2(µ1 +µ3)∆}, e3 = exp{−2(µ2 +
µ3)∆}, and µ1, µ2 and µ3 are the genetic substitution rates per nucleotide
per day, for transitions, type-1 transversions and type-2 transversions, respec-
tively.

In addition, we make the following distributional assumption: the num-
bers of observed transitions, type-1 transversions, type-2 transversions and
unchanged nucleobases over an evolutionary time lag ∆ separating two se-
quences are distributed from a multinomial distribution, say Pµ,s(· | ∆),
with size equal to the length s of the observed sequence fragment and with



58 3 Genetic-space-time modeling and inference for epidemics

the vector of probabilities ρ given above. Thus, for any nonnegative integers
m1,m2,m3,m4 whose sum is s,

Pµ,s{(m1,m2,m3,m4) | ∆} =
(s!)× ρm1

1 ρm2
2 ρm3

3 ρm4
4

(m1!)× (m2!)× (m3!)× (m4!)
.

3.1.6 Genetic-space-time SEIR model

The genetic-space-time SEIR model, whose structure is illustrated by Figure
3.1, is obtained by combining the semi-Markov SEIR model of Subsection 3.1.4
and the Markovian evolutionary model of Subsection 3.1.5. The two models
are combined under the following list of assumptions.

• The disease reservoir (i.e. exogenous source) is assumed to simply consist
of one virus sequence Sexo dated at time texo ∈ R.

• We assume that, at any time, there is only one sequence of the virus (i.e.
one viral variant) per infected individual1. The sequence in individual k
at time t, for t such that Ek(t) = 1 or Ik(t) = 1, is denoted by Sk(t) and
is a vector of letters A, C, G and U.

• When a susceptible individual k is infected by an infectious individual j
at time t, the sequence Sj(t) is transmitted to k, i.e. Sk(t) = Sj(t).

• For any individual, mutations of the virus sequence during the exposed and
infectious stages are assumed to be independent from the epidemiological
dynamics. When an individual is removed, the sequence is fixed. This is
illustrated in Figure 3.2 where the length of the sequence under mutation
is s = 2.

• Virus mutations in different infected individuals are assumed to be condi-
tionally independent given the virus sequences at the infection times.

3.2 Estimation methods

3.2.1 Data structure

Data are assumed to be as follows:

• Data are collected in a spatio-temporal observation window included in the
whole spatial domain and in the whole time frame covered by the disease
dynamics (which is either an epidemic or an endemic dynamics);

1 In Valdazo-González et al. (2015), the impact of within-host-unit genetic variation
upon inferred transmission trees is assessed for the foot-and-mouth disease. In this
case, this impact was moderate. However, for other contexts, using the within-
host diversity of virus sequences can be informative. This is the topic of a project
that I have recently proposed to the French research agency ANR.
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Disease
reservoir

ACCACGUC...

Exogenous infection

��
Sj = 1 // Ej=1

ACCACGUC...
// Ij = 1 ACGACGUC //

Distance-dependent
transmission

��

Rj=1

ACGAUGUC...

Sk = 1 // Ek=1
ACGCGUC...

// Ik = 1 // Rk=1
ACGACGCG...

Fig. 3.1. Diagram illustrating the combination of the semi-Markov SEIR model and
the Markovian evolutionary model. Individual j is infected by the disease reservoir
with virus sequence ”ACCACGUC...”. Then, j becomes infectious and when j infects
k, the sequence in j has evolved (C at the 3rd base mutated to G). Finally, the
sequences in j and k independently evolve.

• Among all the infected cases in the spatio-temporal observation window,
only a subset is observed (thus, sources of infection can be unobserved, and
the unobserved sources can be inside or outside the observation window);

• The removed state corresponds to the death of the individual;
• Sampled individuals are observed when they die, that is to say at the

transition from I = 1 to R = 1;
• Virus sequences that are available correspond to the states of the sequences

at the death times (usually only a fragment of the sequence is available,
the same fragment for all inividuals);

• The central locations x1, . . . , xn of sampled individuals are assumed to be
the locations at the death;

• The sequence Sexo is assumed to be known (in real cases, Sexo can be
reconstructed by a phylogenetic analysis of available genetic sequences:
Sexo is typically the reconstructed sequence of the most recent common
ancestor; see Mollentze et al., 2014).

Compared to the amount of variables in the model, data are particularly
sparse. Indeed, looking at Figure 3.1, data consist of the sequence of the dis-
ease reservoir and locations, times and sequences collected when observed
individuals are in state R = 1. It has to be noted that, usually, only a frac-
tion of infected individuals are observed. Now, consider Figure 3.2, infected
individuals and pathogen sequences are observed in one of the state R = 1
whereas they previously evolved in a high-dimension space of states (37 states
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Fig. 3.2. Possible transitions for an individual in the genetic-space-time SEIR
model, where the virus sequence is of length s = 2. Transitions from S = 1 (sus-
ceptible) to E = 1 (exposed), from E = 1 to I = 1 (infectious) and from I = 1 to
R = 1 (removed) are irreversible, whereas transitions corresponding to substitutions
in nucleobases are reversible.

in Figure 3.2; 1+2×4s states in general, where s is the length of the observed
sequence fragment).

3.2.2 Posterior distribution, approximations and MCMC

Estimation of parameters and latent variables is based on the joint pos-
terior distribution p(J, T inf , L,D, θ | data) of the transmission tree J , in-

fection times T inf = (T inf1 , . . . , T infn ), exposed (or latency) durations L =
(L1, . . . , Ln), infectious durations D = (D1, . . . , Dn), and parameters θ that
contain infection and dispersal parameters α = (α0, α1, α2,1, α2,2), latency
parameters β = (β1, β2), infectiousness parameters δ = (δ1, δ2), mutation
parameters µ = (µ1, µ2, µ3) and the date texo of the exogenous sequence Sexo.

The transmission tree J is a function from {1, . . . , n} to {0, 1, . . . , n} that
states who infected whom: an observed individual i is infected by a pathogen
source j = J(i) that is either another observed individual j ∈ {1, . . . , n},
j 6= i, or the disease reservoir (exogenous source) denoted by 0.

Data are removal times T end = (T end1 , . . . , T endn ), central locations X =
(x1, . . . , xn) and observed sequences Send = {S1(T end1 ), . . . , Sn(T endn )}. The
posterior distribution is:
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p(J, T inf ,L,D, θ | data) = p(J, T inf , L,D, θ | Send, T end, X, Sexo)

∝ p(Send | J, T inf , L,D, θ, T end, X, Sexo)p(J, T inf , L,D, θ | T end, X, Sexo)

= p(Send | J, T inf , L,D, θ, T end, X, Sexo)p(J, T inf | L,D, θ, T end, X, Sexo)

× p(L,D | θ, T end, X, Sexo)p(θ),

(3.2)

where∝means ”proportional to” (the multiplicative constant does not depend
on the unknowns (J, T inf , L,D, θ)), p(Send | J, T inf , L,D, θ, T end, X, Sexo) is
called the genetic likelihood, p(J, T inf | L,D, θ, T end, X, Sexo) is called the
transmission likelihood, p(L,D | θ, T end, X, Sexo) is the distribution of latency
and infectious durations and p(θ) is the prior distribution of parameters.

These distributions (except the prior) are based on assumptions made in
Subsections 3.1.4, 3.1.5 and 3.1.6. Their expressions, which are provided in
Mollentze et al. (2014) and Soubeyrand (2016), will not be detailed here. We
only highlight that the genetic likelihood raised computation issues. Indeed,
the genetic likelihood can be formally written as a function of the unobserved
virus sequences at the infection times Sk(T infk ), k = 1, . . . , n, i.e. the transmit-

ted virus sequences. To avoid to handle latent vectors Sk(T infk ) (the dimension
of this set of unknowns is n × s), Morelli et al. (2012) and Mollentze et al.
(2014) replaced the genetic likelihood by a pseudo-likelihood. Essentially, this
pseudo-likelihood is based on the probability of evolution between two ob-
served sequences given the time lag separating the two sequences. The time
lag is not simply the difference between the times of observation of the two se-
quences but a duration that depends on the topology of the transmission tree
J . To compute the time lag, one has to come back to the most recent common
ancestor (MRCA) of the two sequences and to sum the durations separating
each of the two sequences and the MRCA. Another proposal was made in
Soubeyrand (2016) to handle computation issues: replacing the genetic like-
lihood by an approximate likelihood where the unobserved transmitted se-
quences are deterministically reconstructed conditionally on the transmission
tree J , the observed sequences Send and the exogenous sequence Sexo. The
reconstruction is based on the parsimony principle commonly used in phyloge-
netics: the most parsimonious reconstruction of {Sinfi : i = 1, . . . , n, J(i) > 0}
is the one that requires the fewest evolutionary changes (i.e. the fewest sub-
stitutions of nucleobases; see Tuffley and Steel, 1997, for a formal definition).

To estimate parameters and latent variables, in particular the transmission
tree J , Morelli et al. (2012), Mollentze et al. (2014) and Soubeyrand (2016)
built MCMC algorithms that sample in the posterior distribution (3.2), where
the genetic likelihood was replaced by the pseudo-likelihood or by the approxi-
mate likelihood introduced above. For 30 observed cases, one MCMC run takes
about 2 hours (the computation code was developed with the R Statistical
Software and embedded Fortran subroutines). For 200 cases, we ran parallel
MCMCs (typically 20 chains) during 15 days to obtain satisfactory results.
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In a partially sampled epidemic, any given infected host that was sam-
pled might have been infected by: (i) another sampled host (through direct
transmission), (ii) an unsampled host that had been infected directly or indi-
rectly by a sampled infected host (termed indirect transmission here) or (iii)
an unsampled host that has no ancestor within the sample (termed exoge-
nous transmission here). The model of Morelli et al. (2012) allows for only
a single virus introduction (i.e. a single exogenous transmission) followed by
direct transmissions for the rest of the epidemic, and the MCMC algorithm
was constrained accordingly. Mollentze et al. (2014) extended this model by
allowing multiple unobserved cases to arise anywhere in both space and time
within the set of inferred transmissions. Conceptually, indirect and exogenous
transmissions involving unobserved ancestors can be modeled in the same way
—as being external to the sampled dataset. Thus, to reduce complexity and
computation time, Mollentze et al. (2014) distinguished only between direct
and unsampled sources in a primary MCMC and proposed a post-processing
algorithm to distinguish between indirect and true exogenous transmissions.

3.3 Applications

Because the estimation method proposed above is designed for complex mod-
els (with high-dimension unknowns and strong dependence structure) and is
based on model approximations, we were not able to theoretically justify its
efficiency. Instead, we justified it with simulation studies (Sections 3.3.1–3.3.3)
before applying it to real cases (Sections 3.3.4 and 3.3.5).

As shown below, the estimation method applied to simulated data leads
to satisfactory inferences despite the high-dimension of unknowns. This is
due to a combination of (i) the dependence structure inherent to the model,
especially the time–genetic dependence and the time–space dependence, and
(ii) strongly informative prior distributions for a few parameters, for which
prior knowledge were available. The sections below do not detail the priors
that were used. However, note that vague or slightly informative priors were
generally used for parameters except for mutation parameters (µ1, µ2, µ3 in
Table 3.5) in Sections 3.3.1 and 3.3.4, and except for latency and infectiousness
parameters (β1, β2, δ1, δ2 in Table 3.4) in Sections 3.3.2, 3.3.3 and 3.3.5.

3.3.1 Simulated outbreaks with single introductions

Morelli et al. (2012) simulated 100 genetic-space-time data sets of an outbreak
caused by a single introduction of the virus within a set of 20 hosts. The first
infected host was located at the bottom-left corner of a rectangular study
domain and the 19 remaining hosts were independently and uniformly drawn
in the domain. Each of the 100 data sets was obtained by simulating the
epidemiological and micro-evolutionary dynamics with fixed parameter values
and by collecting genetic, spatial and temporal data similar to those described
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Fig. 3.3. Simulated outbreak infecting 20 hosts and estimation of transmission
events, mean latency duration and mean transmission distance. Top left: true trans-
missions (circles) and posterior probabilities of transmissions (dot sizes are pro-
portional to probabilities). Top right: tree with the highest posterior probability
(solid arrows); Only transmission F12→F11 is not consistent with the true tree
(the true transmission is F3→F11, dashed arrow). Bottom: posterior distributions
(histograms) of mean latency duration (left) and mean dispersal distance (right);
dashed lines: true values; dotted-dashed curves: prior distributions; solid lines: pos-
terior medians; dotted lines: posterior quantiles 0.025 and 0.975.

in Section 3.2.1. The length of observed genetic sequences was s = 8000.
Estimation was carried out with the MCMC algorithm based on the genetic
pseudo-likelihood.

Figure 3.3 shows, for one simulated data set, the true transmission tree
and its estimation as well as estimations of the mean latency duration and
the mean transmission distance. Figure 3.4 shows, for the same simulated
data set, the posterior distributions of infection times and latency durations.
Only one true transmission (F3→F11) is not reconstructed accurately, the
algorithm instead identifying F12→F11. However, the F3→F11 transmission
has a high posterior probability and is included in the tree with the second



64 3 Genetic-space-time modeling and inference for epidemics

highest posterior probability (data not shown). Similarly, estimations of the
mean latency duration, the mean dispersal distance, the infection times and
the latency durations are satisfactory. Performance assessed from the 100 data
sets are summarized in Table 3.6. Among the quantities that were analyzed,
only the coverage rate of the standard deviation of the latency duration by its
95% posterior interval was rather low (0.43) certainly because this is a second
order statistic.
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Fig. 3.4. Estimation of infection times and latency durations for the simulated
outbreak infecting 20 hosts shown in Figure 3.3. Posterior distributions of infection
times (top) and latency durations (bottom left). In both panels, vertical solid lines
indicate the true values. In the top panel, vertical dashed lines indicate the virus
observation times.

3.3.2 Simulated epidemics with multiple introductions – Case 1

Mollentze et al. (2014) assessed the accuracy of the method using 100 sim-
ulated datasets from each of six scenarios. Scenarios 1 to 4 were used to
investigate overall accuracy and the effect of sampling rate on the reconstruc-
tion method, representing high (3/4 of all cases), moderate (2/3 of all cases),
intermediate (1/2 of all cases) and low (1/4 of all cases) detection rates re-
spectively. Scenarios 5 and 6 were used to test the sensitivity of the method to
small and large misspecifications of epidemiological parameters. The misspec-
ifications consisted of using strongly informative but biased prior distributions
on the mean parameter values of the incubation and infectious durations (i.e.
priors were centered on values different from those used in the simulations).

In this study, the simulation model contained a more realistic specification
for the external source of infection than the inference model. While the infer-
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Criterion Value
Mean (Sd.) of posterior probabilities of true transmissions 0.85 (0.08)
Coverage rate of times of infection 0.78
Coverage rate of times of infectiousness (i.e. end of exposed stage) 0.93
Coverage rate of the source strength parameter α1 0.97
Coverage rate of the dispersal parameter α2,1 0.89
Coverage rate of the mean latency 0.94
Coverage rate of the latency Sd. 0.43

Table 3.6. Performance of the estimation algorithm over a series of 100 simulated
outbreaks infecting 20 hosts. The criteria used to assess the performance are the
mean (and standard deviation noted Sd.) of the posterior probabilities of true pair-
wise transmissions, and the coverages by the 95% posterior intervals of the infection
times, the times at which the hosts became infectious, the transmission parameters
(source strength and dispersal parameter) and the latency mean and Sd.

ence model assumes a single external source with a constant infection strength
(constant in both space and time), the simulation model allows for multiple
sources of novel lineages, occurring both inside and outside the sampling re-
gion, with infection strengths that are localized in time and space. For each
simulation, the epidemic was initiated at time zero with one infected host lo-
calized at the origin (0, 0) and 119 susceptible hosts uniformly and randomly
localized in the [0.0, 0.3] × [0.0, 0.1] rectangle. Genetic, spatial and temporal
data were collected as described in Section 3.2.1 in a subregion of the rect-
angular domain (see Figure 3.5 displaying an example of simulated epidemic
under Scenario 1). The length of observed genetic sequences was rather short:
s = 800. Observing cases in a sub-region leads to consider an epidemic with
multiple introductions. Estimation was carried out with an MCMC algorithm
based on the genetic pseudo-likelihood followed by a post-processing analysis
to distinguish between indirect and true exogenous transmissions (see Section
3.2.2).

Table 3.7 reveals that the reconstruction of direct transmissions remains
fairly accurate regardless of sampling intensity (mean posterior probability of
true transmission events > 0.73 for Scenarios 1–4). However, the reconstruc-
tion of transmission events is sensitive to the informative priors used for the
incubation and infectious periods. This limits the suitability of the approach
to diseases where the epidemiology is reasonably well known. Reconstruction
of transmissions involving unobserved cases is moderately accurate at high
sampling intensities, but becomes increasingly unreliable when 50% or less of
the cases in the sampling region are sampled. At these sampling intensities
the post-processing algorithm cannot accurately distinguish between indirect
and exogenous connections.
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Fig. 3.5. Example of simulated epidemic over 120 hosts under Scenario 1. Black dots
represent hosts, while black segments represent transmissions. Samples are taken
from a sub-region, indicated in gray, and in this area, not all cases are detected
or sampled. In simulations under Scenario 1, cases in the sampling area have a
probability of 3/4 of being sampled. Sampled hosts are indicated in red.

Table 3.7. Performance of the estimation algorithm for the estimation of various
transmission events. In each case the mean (and standard deviation) of the posterior
probabilities of true transmission events is reported based on 100 simulations for each
simulation scenario. Scenarios 1 to 4 have varying sampling rates in the study region,
namely 3/4, 2/3, 1/2 and 1/4, respectively. Scenarios 5 and 6 correspond to small
and large misspecifications of epidemiological parameters, respectively.

Transmission type Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 Scenario 6
Direct infection between 0.73 (0.12) 0.73 (0.10) 0.78 (0.13) 0.82 (0.12) 0.60 (0.15) 0.03 (0.03)

observed cases
Infection of observed cases 0.64 (0.19) 0.62 (0.17) 0.54 (0.15) 0.57 (0.15) 0.73 (0.15) 0.76 (0.17)

by unobserved1 sources
Infection of observed cases 0.66 (0.22) 0.58 (0.20) 0.45 (0.18) 0.33 (0.14) 0.72 (0.18) 0.85 (0.17)

by exogenous2 sources
Direct or indirect infection 0.63 (0.15) 0.62 (0.13) 0.57 (0.17) 0.40 (0.18) 0.54 (0.15) 0.08 (0.07)

between observed cases
1 An unobserved source is a host that may have been infected, directly or
indirectly, by an observed case.
2 An exogenous source is a host that has not been infected, directly or indirectly,
by an observed case.

3.3.3 Simulated epidemics with multiple introductions – Case 2

Soubeyrand (2016) simulated 50 data sets similar to those obtained under
Scenario 1 in Section 3.3.2 (Scenario 1) and displayed in Figure 3.5. For each
data set, four different estimation algorithms were applied:

• the first one used the genetic pseudo-likelihood and all genetic data;
• the second one used the genetic approximate likelihood and all genetic

data;
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• the third one used the genetic approximate likelihood and 50% of genetic
data (50% of the available sequences were randomly selected and used for
the inference, the other sequences were ignored);

• the fourth one used the genetic approximate likelihood and 25% of genetic
data (25% of the available sequences were randomly selected and used for
the inference, the other sequences were ignored).

In the two last cases, the number of sampled individuals remains unchanged,
but genetic information that are exploited are reduced.

Table 3.8 shows that using the genetic approximate likelihood instead of
the pseudo-likelihood allowed significant improvement of the identification
of true endogenous sources when all genetic data are used (mean posterior
probability of direct transmissions was increased from 0.75 to 0.82; p-value of
pairwise t-test: 0.018). When the genetic sampling effort was decreased from
100% to 50% and 25%, the correct identification of both endogenous and un-
observed sources was more uncertain but remained relatively high. Indeed, on
average, there were 31 observed hosts in the simulated data sets and conse-
quently, for each infected host there were 30 possible endogenous sources and
1 possible unobserved source. Therefore, obtaining a mean posterior probabil-
ity of true transmission equal to 0.36 or 0.72 indicates that, in average, the
true source is identified with a relatively high probability.

Table 3.8. Performance of the estimation algorithms for the estimation of various
transmission events. Means (and standard deviations) of posterior probabilities of
true transmission events are reported based on 50 simulations. Four estimation al-
gorithms were applied, one based on the genetic pseudo-likelihood and three based
on the genetic approximate likelihood with three different levels of genetic sampling
effort. The genetic sampling effort is the percentage of observed cases for which the
virus was sequenced and used in the inference.

Substitute of genetic likelihood Pseudo-likelihood Approximate likelihood
Genetic sampling effort (%) 100 100 50 25
Direct infection between 0.75 (0.20) 0.82 (0.20) 0.48 (0.27) 0.36 (0.31)

observed cases
Infection of observed cases 0.80 (0.18) 0.80 (0.18) 0.72 (0.21) 0.72 (0.21)

by unobserved1 sources
1 An unobserved source is a host that may have been infected, directly or
indirectly, by an observed case.

3.3.4 The 2007 outbreak of FMDV in the UK

The algorithm designed for outbreaks with single introductions was applied
to a dataset collected during the 2007 outbreak of Foot-and-Mouth Disease
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Virus (FMDV) in the UK, which infected 8 premises in Surrey and Berkshire
(Cottam et al., 2008). The full virus sequences with s = 8176 nucleobases
were used for the inference.

The reconstructed scenario with maximum posterior probability (Figure
3.6, top right) comprises two phases: IP1b was infected by an external source,
and transmitted the virus to the neighboring premise IP2b and to IP5 further
away; the virus remained contained and undetected on IP5 until it spread to a
closeby premise IP4b; finally the virus spread from IP4b to the other premises.
While the link made by IP5 between the two phases is highly supported,
the estimation of the other transmissions was more uncertain: within the
two clusters (IP1b, IP2b, IP5) and (IP5, IP4b, IP3b, IP3c, IP6b, IP7, IP8)
several other transmission scenarios have non-negligible posterior probabilities
(Fig. 3.6, top left). The mean estimated latency duration has a posterior
median of 14 days and a 95%-credible interval of (6, 49) as shown in Fig. 3.6,
bottom left; the long delay between the infection of IP5 and the subsequent
transmissions is responsible for this result. The long distance between IP5
and its source (IP5 is 18.2 km away from IP1b) explains the large mean
transmission distance (Fig. 3.6, bottom right), whose posterior median is 17
km and 95%-posterior interval is (5,58).

3.3.5 The endemic rabies dynamics in KZN, South Africa

The algorithm designed for multiple introductions was applied to a set of 176
canid-associated rabies cases detected between 1 March 2010 and 8 June 2011
in KwaZulu Natall (KZN), a South-East province of South Africa (Figure 3.7,
left). This dataset contained 153 rabies cases detected in domestic dogs, 1 case
detected in a jackal and 22 cases detected in domestic livestock. Livestock
typically do not transmit rabies, and these cases were explicitly treated as
dead-ends for transmission in the model. A sequence fragment of s = 760
nucleobases was used for the inference.

The majority of cases could not be linked through direct transmissions – 69
(95% posterior interval [PI]: 60-79) direct transmissions were identified, while
unsampled sources were the most likely link for the remaining 107 (95%-PI:
97-117) cases (Figure 3.7, right, and 3.8). When considering only direct trans-
missions, there were several independent chains of transmission and many
transmissions inferred to have taken place over long distances. The mean dis-
tance between the most probable directly connected cases was rather hight,
namely 14.9 km (0.025- and 0.975-quantiles: 0.0 and 56.1 km; Figure 3.9, left).
Occasional long-distance transmissions, particularly along the major highways
that follow the KZN coast, have been identified before in the study area (based
on phylogenetic patterns) and have been ascribed to motorized transporta-
tion of dogs (Coetzee and Nel, 2007). Road distances have also been shown
to be a better predictor of rabies dissemination than absolute distances in
northern Africa, again suggesting that humans may be responsible for long
distance transmission of rabies (Talbi et al., 2010). The long distances and
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Fig. 3.6. Estimation output for the 2007 FMDV outbreak in the UK. Top left:
posterior probabilities of transmissions (dot sizes proportional to probabilities). Top
right: tree with the highest posterior probability mapped in space (black arrows).
Bottom: posterior distributions (histograms) of mean latency duration (left) and
mean transmission distance (right); dotted-dashed curves: prior distributions; solid
lines: posterior medians; dotted lines: posterior quantiles 0.025 and 0.975.

short time-periods between cases in the transmission tree provide further ev-
idence for motorized transportation of infected dogs, but such transmissions
were not restricted to any one area and instead appear to be a common fea-
ture of the epidemiology of rabies in this area. This might be due to the high
prevalence of circular human migration and migrant labour in many parts
of KZN, with migrants visiting their rural households (and, it would seem,
taking their dogs with them) on a regular basis (Posel and Marx, 2013).
The analysis of indirect links using the post-processing algorithm mentioned
in Section 3.2.2 is not presented here but can be found in Mollentze et al.
(2014). Figure 3.9, right, shows the posterior distribution of the number of
nucleotide substitutions between the pathogen sequences collected in pairs of
directly connected cases. The large probability of zeros (no difference between
sequences) partly explains the high uncertainty in the inferred transmission
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links (see Figure 3.8) and highlights the necessity of combining heterogenous
data, namely spatial, temporal and genetic data, to infer transmission trees
and associated epidemiological parameters.
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Fig. 3.7. Left: Detailed map of KwaZulu Natal (KZN) showing the cases detected
between 1 March 2010 and 8 June 2011 in the context of major roads, towns and
cities. Right: Transmission trees showing the direct pairwise transmissions with high-
est posterior probabilities. Transmission links between cases are represented by or-
ange arrows (and dots when a transmission links cases at the same location), while
red dots represent cases for which no direct ancestor was detected. The inset shows
an enlarged view of connections in the southern coast of KZN, were the majority of
cases where detected.
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Fig. 3.8. Graphical representation of the posterior distribution of inferred direct
sources. Individuals are arranged by observation date on both axes, with each in-
fected individual (horizontal rows) indicated in an alternating color for clarity. Q0
indicates the start of the sampling period, while Q1–Q4 indicate the ends of quar-
ters of the sampling period. “Exogenous” indicates infection from an external source,
encompassing indirect transmissions and introductions from outside the dataset.
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Fig. 3.9. Left: Posterior distribution of the transmission distances between directly
connected cases. Right: Posterior distribution of the number of genetic differences
between directly connected cases.
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PDE-based mechanistic-statistical modeling

Author’s references: Roques et al. (2011), Roques et al. (2014), Roques et al.
(2016), Soubeyrand and Roques (2014).

Mathematical models are widely used in ecology, evolutionary biology and
epidemiology to test hypotheses, simulate scenarios and make predictions.
Countless mechanistic models, including analytical and agent-based models,
have been developed, and their behaviors have been studied by determining
stable equilibria and e.g. performing sensitivity analyses. Statistical models
have been used to infer the values of model parameters. Each type of model
has been criticized. For statistically orientated scientists, analytical models
are typically over-simplified and agent-based models do not control for er-
ror propagation. For other scientists, statistical models are poorly and non-
mechanistically linked to biological processes. Fortunately, with advances in
statistical and computer sciences, it is now becoming possible to reconcile
the different modeling approaches, and various kinds of hybrid mechanistic-
statistical models can be constructed and fitted rigorously to data. These
models, combining a process model and a data model, are often built as state-
space models where the hidden layer is mechanistically constructed. They
have been called physical-statistical models (Berliner, 2003) or mechanistic-
statistical models (Soubeyrand et al., 2009c,d). Other examples of such models
are given by Buckland et al. (2004), Rivot et al. (2004), Wikle (2003b) and
Roques et al. (2011, see Section 4.2) in ecology, and by Campbell (2004), Wikle
(2003a) and Roques et al. (2014, see Section 4.3) in environmental science.

Most of the mechanistic-statistical models that I have built contain a pro-
cess model that is stochastic. For instance, in Section 2.5, we have seen a rather
complex mechanistic-statistical model allowing for the analysis of the multi-
year dynamics of a metapopulation. This model contains a process model,
which is essentially based on an inhomogeneous spatio-temporal point pro-
cess. Thus, the mechanistic part of the model is stochastic. In Soubeyrand
et al. (2009d), we proposed another mechanistic-statistical model for analyz-
ing the dynamics of a pest, namely the pine sawfly, across Finland and over
three decades. Here also, the mechanistic component of the model is stochas-
tic because it is based on a spatio-temporal gamma process including random
jumps.
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Such models based on stochastic process models generally contain numer-
ous latent variables, which imply the use of particularly computer-intensive es-
timation algorithms. For the analysis of ecological and epidemiological dynam-
ics, an alternative approach to building the process model is to use reaction-
diffusion equations corresponding to a particular type of parabolic partial
differential equations (PDE). This approach results from a long tradition:
the family of PDEs adapted to population dynamics has been enriched for
more than 60 years (Skellam, 1951; Holmes et al., 1994). This long-term re-
search has produced numerous PDEs in good agreement with dispersal and
reproduction properties of populations observed in nature as well as experi-
mental systems (e.g. see Murray, 2002; Okubo and Levin, 2002; Shigesada and
Kawasaki, 1997). The reason why reaction-diffusion for population dynamics
deserves to be used in the mechanistic-statistical approach lies in their concise-
ness for taking into account relatively complex spatio-temporal dependencies:
the spatio-temporal evolution of the population density, say u(t, x) (where t
denotes a time and x denotes a location), is governed via an equation where
derivatives with respect to time (generally ∂u/∂t) and derivatives with re-
spect to space (generally ∂2u/∂x2) interplay. However, this formalism leads
to equations that are generally viewed as limit models for large populations or
as models for the expectation of the population dynamics —or higher-order
moments. Therefore, reaction-diffusion equations have not to be considered
as the panacea for modeling all population dynamics1, but they can be ad-
vantageously utilized in a mechanistic-statistical approach as a way to mimic
the main trend of the population dynamics.

In Wikle (2003b), a PDE-based mechanistic-statistical model is fitted to
data collected during the spread of a bird population in North America. In this
work, Wikle incorporated several noise processes into the reaction-diffusion
equation, in addition to the randomness incorporated in the data model.
His motivation was to obtain a more realistic process model than the pure
reaction-diffusion equation. Generally, incorporating noise into the reaction-
diffusion equation negatively impacts the computation effort to fit the model
to data. Thus, there is a trade-off between the freedom degree of a PDE-based
model and the computation cost of the associated estimation algorithm.

In this chapter, we present studies where reaction-diffusion equations
(without noise or including latent processes) are used to build the process
model. Section 4.1 proposes the construction of such models to study biolog-
ical invasions. Section 4.2 illustrates the proposed approach with a real-life
example, namely the expansion of the pine processionary moth in northern
France. Section 4.3 illustrates the proposed approach in the context of long-
term climatic dynamics. We present the latter example despite the large dif-

1 Obviously, reaction-diffusion equations are not adapted, for example, to describe
individual-to-individual transmissions of a virus studied in Chapter 3.
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ference between climatic issues and epidemiological issues because this case
allows us to show that the data model can be quite sophisticated2.

4.1 Parameter estimation for reaction-diffusion models
of biological invasions

Consider a reaction-diffusion equation which models the spread of an invasive
species in a domain Ω included in Rd, with d = 1 or d = 2:

∂u

∂t
= D∆u+ u(r − γu), (4.1)

where u = u(t, x) is the population density at time t > 0 and space location

x ∈ Ω; D > 0 measures the dispersion rate; the operator ∆u =
∑d
i=1

∂2u
∂x2

i

stands for the spatial dispersion operator; the coefficient r ∈ R corresponds to
the intrinsic growth rate of the species (that is, the growth rate in the absence
of competition); and γ > 0 measures the effect of competition. Given some
conditions on the boundary of Ω and an initial condition u0(x) = u(0, x),
the equation (4.1) is well-posed in the sense that it admits a unique solution
u(t, x), for all t > 0 and x ∈ Ω.

The parameter vector that we want to infer, say θ, can consist of several
constants or functions incorporated in the model, e.g. D, r, γ and u0. Ideally,
if observations are noise-free (i.e. one observes exactly the solution of the equa-
tion, at least in some points in time and space), then one can use results from
the inverse problem approach to estimate the model parameters. However,
observations are generally noisy. In this case, one can adopt the state-space
approach (or mechanistic-statistical approach) based on hierarchical modeling
and statistical inference.

Broadly speaking, for biological invasions, inverse problems mainly have
a theoretical interest: one investigates the existence and the uniqueness of
parameters. However, the inverse problem approach has also a practical in-
terest: it can be shown that very sparse (but noise-free) information can be
sufficient to determine parameter values. The implication of such a result in
a real-life study is that one can expect, at least for moderately noisy observa-
tions, to estimate parameters even with sparse data. Nevertheless, in a real-life
study, one has to take into account the noise in the observations by building
a model that connects the mechanistic vision of the studied phenomenon to
a stochastic vision of the observation of this phenomenon. The observations
are considered as stochastic because the quantities of interest (e.g. population

2 An other example of a relatively sophisticated data model is given in Roques
et al. (2016), where we adopted a PDE-based mechanistic-statistical approach to
estimate a spatially heterogeneous rate of diffusion. In this work, instead of using
data measuring the intensity of the population, like in Section 4.1, we use genetic
data.
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abundance) are often indirectly observed and because the observation pro-
cess often implies a loss of information (e.g. spatial and temporal censorship,
measurement uncertainty, binarized signal). The coupling of the mechanistic
vision of the studied phenomenon with the stochastic vision of the observation
can be made with the mechanistic-statistical approach.

In Soubeyrand and Roques (2014), we illustrated both the inverse prob-
lem approach and the mechanistic-statistical approach. The following sections
provide a simulated example of the latter approach: we estimate the date and
location of the introduction of an invading species using noisy observations
which consist of impacts of the invading species towards the environment
measured at discrete times and at discrete locations.

4.1.1 Model

Mechanistic model

The model for the dynamics of the species is the reaction-diffusion equa-
tion (4.1) in a two-dimensional domain Ω ⊂ R2, which is depicted in Fig-
ure 4.1. The quantity u is assumed to obey Neumann conditions on the bound-
ary ∂Ω of Ω: ∂u

∂ν = 0 almost everywhere on ∂Ω, where ν is the outward unit
normal to ∂Ω. Besides, we assume that the equation is verified for all time
t > −t0, where t + t0 > 0 corresponds to the time since the introduction of
the species: 

∂u

∂t
= D∆u+ u(r − γu), t > −t0, x ∈ Ω,

∂u

∂ν
(t, x) = 0, t > −t0, x ∈ ∂Ω,

u(−t0, x) = u0(x), x ∈ Ω.

(4.2)

All the coefficients D, r and γ are assumed to be constant in Ω. The function
u0(x) corresponds to the initial density of the founding population at the
date of introduction −t0. The initial population density is assumed to be an
exponential function with known shape but unknown location of introduction.
More precisely, we assume that

u0(x) = exp (−20 ‖x− x0‖) , for x ∈ Ω,

where x0 ∈ Ω corresponds to the location of introduction and ‖ · ‖ is the
Euclidean norm.

In this example, we aim to estimate the time t0 and the location of intro-
duction x0 together with parameters D, r and γ; let θ = (D, r, γ, t0, x0).

Model of the observation process

Concerning the sampling scheme, the observations are carried out in I = 6
subdomains ω1, . . . , ω6 ⊂ Ω (see their locations in Figure 4.1) and at J = 10
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times τj = 0.1 (j−1) for j = 1, . . . , 10 in each subdomain. We assume that the
impact Ȳij of the species in the domain ωi and at the time τj is proportional
to the number of individuals inside this subdomain at that time:

Ȳij = α

∫
ωi

u(τj , x) dx,

for some known constant α which measures the mean impact per unit of pop-
ulation density. The measurements Yij of the impacts are assumed to follow
independent Poisson distributions with mean values Ȳij . Thus, the probability
density function of Y = (Yij)1≤i≤I,1≤j≤J is:

p(Y; θ) =
∏

1≤i≤I,1≤j≤J

exp
{
− Ȳij

} { Ȳij}Yij

Yij !
. (4.3)

4.1.2 Estimation and results

We simulated the model (4.2) in Ω during the time period t ∈ (−t0, 1) with
the following values for the parameters: D∗ = 5 · 10−2, γ∗ = 1, r∗ = 2, t∗0 = 2
(unit of time) and x∗0 = (1.2, 0.2); let θ∗ = (D∗, γ∗, r∗, t∗0, x

∗
0). Figure 4.1 shows

the simulation of the population density at the origin −t0 and at the sampling
times τ1 = 0 and τ10 = 0.9. It also shows the cloud of points {Ȳij × Yij : i =
1, . . . , 6, j = 1, . . . , 10}.

We chose a uniform prior distribution for the parameter vector θ:

π(θ) = 1
0.99×9.9×20×10×|Ω|1(10−2 < D < 1, 0.1 < γ < 10)

×1(−10 < r < 10, 0 < t < 10, x0 ∈ Ω),

where 1 is the indicator function, and we drawn a sample from the posterior
distribution of θ with an MCMC algorithm including Metropolis-Hastings
updates. The crucial advantage of defining the mechanistic model as a PDE
lies in the following tricks: (i) the likelihood (and the acceptance probabilities
in the Metropolis-Hastings updates) can be computed rapidly if the PDE can
be solved rapidly, and (i) no latent variables has to be updated in the MCMC
algorithm (because the values Ȳij are deterministic functions of θ).

The marginal posterior distributions of D, γ, r, t0 and x0 are presented in
Figure 4.2. This toy example shows that the introduction date and location
of an invading species satisfying a reaction-diffusion equation can be correctly
estimated. In real situations, however, the inference might be less accurate,
especially because the reaction-diffusion equation incorporates strong regular-
ity assumptions about the population dynamics whose actual behavior might
be not much regular.
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Fig. 4.1. Solution of the model (4.2) with parameter θ∗ at times -2.0, 0.0 and 0.9 in
panels (a), (b) and (c), respectively. The study domain Ω is delimited by the contour
line, and the six sampling subdomains ω1, . . . , ω6 are indicated by circles. Panel (d):
Real impact Ȳij versus observed impact Yij for i = 1, . . . , 6 and j = 1, . . . , 10.

4.2 Application to the expansion of the pine
processionary moth

Recent studies have reported a northward geographic range expansion of the
pine processionary moth (Thaumetopoea pityocampa, Lepidoptera: Notodon-
tidae, abbreviated as PPM below). In the Paris Basin, France, its range has
shifted 87 km northward between 1972 and 2004, with a notable acceleration
(55 km) during the last 10 years (Battisti et al., 2005; Robinet et al., 2007).

Because of its impact on forests, this expansion is likely to have important
ecological consequences. It may also cause sanitary issues. The PPMs are
entering semi-urban and urban areas; therefore, the insect has progressed
from mere forest pest to urban medical threat. The threat arises from the
way these organisms protect themselves against predation. When threatened,
mature larvae release irritant hairs that cause allergic reactions in both man
and warm-blooded domestic animals; reactions range from the cutaneous type
to anaphylactic shock (Doutre, 2005).
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Fig. 4.2. Posterior distributions of D (top left; prior: Uniform([0.01, 1])), γ (top
right; prior: Uniform([0.1, 10])), r (center left; prior: Uniform([−10, 10])), t0 (center
right; prior: Uniform([0, 10])) and x0 = (x0,1, x0,2) (bottom; prior: Uniform(Ω)). In
all panels, the dashed lines indicate the position of the true parameter values. In the
bottom panel, Ω is delimited by the contour line, and the six sampling subdomains
are indicated by circles.
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Extensive measurements that have been carried out at different spatial
scales in France show that the northern range of the PPM is not regular. This
indicates that population expansion is faster in some regions. Determining
these regions is of crucial importance for controlling and preventing PPM
expansion.

In Roques et al. (2011), we investigated possible heterogeneity in the ex-
pansion of PPM in the Paris Basin. Our goal was to build a map that describes
where the environment is favorable / unfavorable to PPM expansion. In this
aim, we developed a mechanistic-statistical approach for analyzing the spatial
variations in the range expansion of PPM by using binary measurements (i.e.
presence / absence of PPM nests in sampling cells). The proposed method
allowed us to infer the local effect of the environment on PPM population
expansion. This effect is estimated at each position x using a parameter F (x)
that corresponds to the local fitness of PPMs.

4.2.1 Data

The life cycle of the PPM usually lasts for one year and can be divided into two
main stages: (i) the adult stage and (ii) the larval stage. The adult stage starts
at the beginning of the summer when adult moths emerge from the soil and
begin taking flight. Next, mating and spreading occurs. Females lay 70-300
eggs, which are usually deposited simultaneously on pine trees. Larvae emerge
from eggs during the second half of summer. Immediately after emergence,
they build a common silk nest on the pine where eggs were deposited. At the
beginning of spring, the larvae leave the nest and dig into the soil where they
transform into pupae and remain for a few months until the next adult stage.

The clutch size, laying frequency and survival rates during the larval and
adult stages may be influenced by environmental factors. Therefore, PPM
fitness may depend on the spatial position of the individuals, and we aimed
to estimate this local PPM fitness.

The study domain is a rectangular region Ω (134 km× 60 km) located in
the Paris Basin; see Figure 4.3. The PPM range has been measured in 2007,
2008 and 2009 through direct observations of the presence of PPM nests in
pines. The study region was mapped into a lattice made of I = 2010 square
cells ωi of the same size 2 km × 2 km. For each year n, Jn < I cells were
observed; the Jn sampled cells varied with time. Moreover, only binary data
(presence or absence of PPM nests) have been recorded; see Figure 4.3 (a)-(c).
These data indicate a northward range expansion of the PPM; see also Figure
4.3 (d).

4.2.2 Model

The mechanistic-statistical model that we developed for analyzing PPM ex-
pansion is quite complex. Below, we only present its skeleton.
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Fig. 4.3. Observed presence / absence of PPM nests in 2007 (a), 2008 (b) and 2009
(c). Blue squares in the study site Ω correspond to observed cells ωi where PPM
have not been detected. Red squares correspond to cells ωi where PPM nests have
been detected. (d): Position of the northernmost points where PPM nests have been
detected during years 2007, 2008 and 2009. In each panel, green dots indicate sites
with high densities of pine trees, but pine trees are present at least at low densities
in most of the study domain.

Mechanistic model

The nest density evolves through a discrete-time process with a yearly time
step. However, this evolution results from the dispersal and laying of adult
PPMs, which is a continuous-time process. Our aim was to build a model
which expresses nest density as a function of the adult density during the
whole adult stage and of an environmental factor F (x).

Let vn(t, x) be the density of adult PPMs at time t of year n and at
location x and let vn,0(x) = vn(tn,0, x) denote the density of adult PPM at
the beginning tn,0 of the adult stage of year n.

Let wn(t, x) be the cumulated density of adult PPMs at time t in the adult
stage of year n. Besides, let w∗n(x) = wn(t∗n, x) where t∗n is the end time of the
adult stage of year n.

Let un(x) denote the density of nests at location x and at the end of year
n.

The mechanistic model establishes the links between the spatial and spatio-
temporal functions defined above.
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First, the initial density vn,0(x) (i.e. the density of emerging adults in year
n) is obtained as a function of the density of nests un−1(x) at the previous
year (since larvae in nests leads to adults):

vn,0(x) = r(un−1(x))un−1(x), (4.4)

where r(u) gives the number of emerging adults per nest unit when the local
density of nests is u. Taking into account an Allee effect, the function r was
defined by r(u) = Ru/(1 + u), where R is a positive constant.

Second, the density of adults vn(t, x) was assumed to satisfy a reaction-
diffusion equation (during the adult stage) where the reaction is only com-
posed of mortality: for any t ∈ (tn,0, t

∗
n] during the adult stage of year n and

for any x ∈ Ω,
∂vn
∂t

= D∆vn −
vn
ν
, (4.5)

where D is the diffusion parameter and ν is the life expectancy (at each time
unit a fraction 1/ν of the individuals die). The initial condition for this PDE
is given by vn,0 defined in Equation (4.4) and no-flux conditions were assumed
at the borders of a rectangular domain3 including Ω.

Third, the cumulated population density at time t of year n and at position
x, which is defined by:

wn(t, x) =

∫ t

tn,0

vn(s, x) ds,

also satisfies a reaction-diffusion equation. Indeed, integrating Equation (4.5)
between tn,0 and t leads to:

∂wn
∂t

= D∆wn −
wn
ν

+ vn,0, t ∈ (tn,0, t
∗
n], x ∈ Ω, (4.6)

with wn(tn,0, x) = 0. The quantity w∗n(x) is obtained by solving Equation
(4.6) at t = t∗n.

Fourth, we assumed that the density of nests at year n results from the
local cumulated density of adults during year n and satisfies:

un(x) = min {w∗n(x)F (x),K(x)} , (4.7)

where w∗n(x)F (x) corresponds to the nest density which would be obtained at
the end of year n for a non-constraining carrying capacity, and K(x) corre-
sponds to the spatially heterogeneous carrying capacity4. The so-called local
fitness F (x) is supposed to depend on local environmental factors but not on
the carrying capacity which is already taken into account by Equation (4.7)
via K(x).

3 This rectangular domain including Ω is ignored in the following to simplify the
presentation of the model in this document. Details about this larger domain and
its role in the model and in the inference are given by Roques et al. (2011).

4 In this application, K(x) was assessed by smoothing the map of pines shown in
Figure 4.3 since nests are formed in pines.
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Model of the observation process

As explained in Section 4.2.1, the study domain Ω was divided into I square
cells ωi with same area ρ = 4 km2. Discrete time is indexed by n = 0, . . . , N ;
the interval between n and n + 1 corresponds to one year (=one cycle). We
denote by Yn(i) the binary variable that takes the value 1 if PPM nests have
been detected and 0 if no nest has been detected in the cell ωi at year n.

If a cell ωi has been observed during year n, the probability that Yn(i) = 1
depends on the local nest density in the cell ωi. We assumed that the detection
variables were independently drawn from the following Bernoulli distributions:

Yn(i)|un ∼
indep.

Bernoulli
{

1− (1− p)
∫
ωi
un(x)dx

}
, (4.8)

where
∫
ωi
un(x)dx is the density of nests in the sampling cell ωi, and p is the

detection probability of one nest unit in one unit area. The probability p was
determined via additional data assessing the quality of detection. The success
probability of the Bernoulli distribution was obtained via the probability of
not detecting

∫
ωi
un(x)dx nest units by assuming that the observations of the∫

ωi
un(x)dx units are independent.

4.2.3 Estimation

We aim to estimate the local fitness F (x) for x ∈ Ω and the diffusion pa-
rameter D of the mechanistic-statistical model presented above, the other
parameters and functions in the model being given (including an initial value
for un for a given year n before the first sampling year). Using Equation (4.8),
the likelihood can be simply written as a function of F and D.

To handle the estimation of F we supposed that F is piecewise constant:
Ω was discretized into N = 35 × 15 = 525 rectangular subcells of the same
size, and F (x) = Fj for all x in the cell j ∈ {1, . . . , N}. Thus estimating F
becomes equivalent to estimating the values Fj .

In the absence of further information we assumed independent uniform
prior distributions in [0, Fmax] of the parameters Fj , and a uniform prior
distribution (independent of F ) in [0, Dmax] of the parameter D:

Fj ∼ Uniform(0, Fmax), j = 1, . . . , N and D ∼ Uniform(0, Dmax).

From the definition of F (x), and because each female can bear at most 300
eggs with a sex-ratio close to 1 : 1, we fixed Fmax = 150. The value of Dmax

was set to5 30km2/day.

5 When the diffusion coefficient is equal to D, the average dispersal distance of
the individuals after τ days is L =

√
π τ D km. Whenever τ = 1 (i.e. the life

expectancy) we have for a low value of D L(τ = 1, D = 10−3) = 0.06 km and for
D = Dmax L(τ = 1, D = 30) = 9.7 km.
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We drawn a posterior sample of the parameters with a MCMC algorithm
including Metropolis-Hastings updates. Like in Section 4.1.2, the likelihood
(and the acceptance probabilities in the Metropolis-Hastings updates) can be
computed rapidly because the PDE can be solved rapidly. However, here the
number of parameters is much higher since we have to update 526 parameters
(the Fjs and D) in the MCMC algorithm.

4.2.4 Results

Posterior distribution of the fitness parameter F
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Fig. 4.4. Pointwise first, second (median) and third quartiles of the posterior dis-
tribution of the fitness function F in the domain Ω.

The posterior quartiles of Fj (j = 1, . . . , N) are shown in Figure 4.4. The
distribution of F is clearly different from the prior distribution. This indicates
that our binary observation data do carry information about the distribution
of F . We can also observe that the distribution of the fitness F is spatially
heterogeneous (i.e. the posterior distribution of Fi strongly depends on the
position of the cell i) and spatially structured6 (i.e. close regions tend to
have close fitnesses). Thus, we notice several large unfavorable regions (black
regions in Figure 4.4).

The posterior distribution of F is not strongly correlated with the host
density shown in Figure 4.3 which was used to define the spatially hetero-
geneous carrying capacity K. This is a consequence of Equation (4.7) which

6 A permutation test was built and applied to demonstrate the spatial structure.
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incorporates both F and K such that F is defined for a non-constraining car-
rying capacity. Thus, F is not a simple function of K but the environmental
factors determining F have to be disentangled.

Posterior distribution of the diffusion parameter D

The posterior distribution of the diffusion parameter D is shown in Figure
4.5. The posterior median of D is equal to 9.3 (mean 9.4 and standard error
0.4). This value D = 9.3 corresponds to an average dispersal distance equal
to
√
πτD = 5.4 km when τ = 1 (i.e. the life expectancy). This is higher

than usually observed for Lepidoptera (see Kareiva (1983) and Shigesada and
Kawasaki (1997), page 55) and may indicate that the dispersal is not purely
diffusive7.
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Fig. 4.5. Posterior distribution of the diffusion parameter D.

4.3 Side topic: Parameter estimation for climatic energy
balance models with memory

In Roques et al. (2014), we studied parameter estimation for one-dimensional
energy balance models with memory (EBMM) given localized temperature
measurements. EBBMs are simple climatic models belonging to the class of
nonlinear parabolic PDEs with delay terms. Adopting the inverse problem ap-
proach, we first shown that a space-dependent parameter can be determined

7 A current work on the spatio-temporal dynamics of poplar rust led us to build a
mechanistic-statistical model based on an integro-differential equation instead of
a PDE. Thus, we are able to infer non-diffusive dynamics.
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uniquely everywhere in the PDE’s domain of definition, using only temper-
ature information in a small subdomain. This result is valid only when the
data correspond to exact measurements of the temperature. However, at the
large temporal scales (e.g. several thousand of years), temperature measure-
ments are noisy. For example, for temperatures reconstructed from ice cores or
marine-sediment cores, data contain two sources of uncertainty: (i) in the value
of the measured temperature; and (ii) in the accuracy of the dating, which
tends to decrease as samples are derived from earlier time points (Salamatin
et al., 1998). In this context, we proposed a mechanistic-statistical approach
for estimating a space-dependent parameter of an EBBM. This approach is
described below.

4.3.1 Model

Mechanistic model

We assume that the spatio-temporal dynamics of the temperature is governed
by the following EBMM: for time t > 0 and location x ∈ (0, 1) (corresponding
for example to a latitude between the equator and the north pole of the Earth),

∂T

∂t
=
∂2T

∂x2
+ α(x)(1− a(T ))− g(T )−

(
1

τ

∫ 0

−τ
T (t+ s) ds

)3

. (4.9)

Equation (4.9) includes

• a heat diffusion term ∂2T
∂x2 ;

• an incoming radiation term α(x)(1 − a(T )) due to solar radiation; this
term depends on a spatially varying insolation function α roughly mea-
suring incident radiation at location x, and the albedo function8 a which
is assumed to be known;

• an outgoing radiation term g(T ) due to terrestrial radiation; this term
coincides with the greyness function9 g which is assumed to be known;

• an history term
(

1
τ

∫ 0

−τ T (t+ s) ds
)3

depending on a delay parameter τ >

0.

By including the history term into the equation, the temperature values at a
given time t depend on a weighted combination of past temperatures T (t+ s)
over some range of s < 0. The dependence of temperature on the history term

8 The albedo function is the ratio of reflected radiation from the surface to incident
radiation upon it. On Earth, the albedo depend for instance on the vegetation
cover and the presence of clouds. Here, the albedo function is simply modeled as
a function of temperature like in Ghil and Childress (1987).

9 The greyness function models the difference between black-body radiation equal
to σT 4 (where σ is the Stefan-Boltzmann constant) and the radiation of the body
of interest, for example the Earth.
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corresponds to the delayed response of the incoming and outgoing radiation
functions.

Because of the history term, the initial condition of the EBBM has to be
of the form:

T (s, x) = T0(s, x), for s ∈ [−τ, 0] and x ∈ [0, 1],

for some function T0 defined on [−τ, 0] × [0, 1]. Here we set T0 ≡ 10◦C. The
boundary conditions are of Neumann’s type:

∂T

∂x
(t, 0) =

∂T

∂x
(t, 1) = 0 for t ≥ 0.

Figure 4.6 (top panels) shows the solution of Equation (4.9) for two values
of the delay parameter, τ = 0.2 ky and τ = 0.7 ky, during the time interval
−τ ≤ t ≤ tmax = 5 ky, where 1 ky = 1000 years. Figure 4.6 (bottom) shows
the temporal evolution of the average temperature. The function α which was
used for these simulations is plotted in Figure 4.8. When τ = 0.2 ky, the
solution of (4.9) exhibits small temporal variations that are quickly damped
and a stable steady state is quickly reached. For τ = 0.7, a stable periodic
orbit is reached asymptotically, but the transient is considerably longer and
larger amplitudes persist for quite a while.

Model of the observation process

We assume that data are obtained from ice cores collected at three sites
(x1, x2, x3) = (0.5, 0.7, 0.9). At each location xk (k = 1, 2, 3), we denote by
tk1, . . . , tkI the sequence of I = 50 decreasing epochs (tmax = 5 ≥ tk1 > . . . >
tkI ≥ −τ), at which the temperature T (tki, xk) is measured, based on labora-
tory sampling of the ice core extracted at location xk. Let Yk(tki) denote the
measure of the temperature T (tki, xk).

The uncertainty in dating epochs implies that Yk(t) is actually a measure
of the temperature T (s(t), xk), where s is a function deforming the time scale
that can vary with k. This function is the result of errors in the chronostratig-
raphy, i.e. in the age-depth plot, of ice cores. Furthermore, the uncertainty in
measuring the temperature value implies that T (s(t), Sk) contains noise as
well.

Our model for the observation process has to take into account these two
sources of uncertainty. First, given s(tki), i = 1, . . . , I, the observed variables
Yk(tki) are assumed to be conditionally drawn from independent normal dis-
tributions:

Yk(tki) | s(tki) ∼
indep.

Normal
{
T (s(tki), xk), σ2

}
, (4.10)

where σ2 is the variance of the noise in the temperature measurements.
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Fig. 4.6. Top: Solution T (t, x) of the EBMM model (4.9) for τ = 0.2 ky (left) and
τ = 0.7 ky (right). Bottom: Temporal variation in the global average temperature∫ 1

0
T (x, t)dx for τ = 0.2 (blue line) and τ = 0.7 (red line).

Second, the sampled times s(tki), i = 1, . . . , I, are defined by the following
random sequence:

s(tki) = tmax−
i∑

j=1

ηkj with ηkj ∼
indep.

Gamma

(
tk,j−1 − tkj

κ2
, κ2
)
, (4.11)

where κ2 is a positive parameter that controls the shape of the distribution
and tk0 = tmax. Thus, the expectation of s(tki) in Equation (4.11) is tki,
and its variance increases as tki moves further into the past. Another impor-
tant feature of the model (4.11) is that it is order-preserving: if tki > tki′ ,
then s(tki) > s(tki′). Therefore, there is no uncertainty on the order of times
tk1, . . . , tkI .

4.3.2 Estimation

Our aim was to estimate α, which is supposed to be a piecewise constant
function with 30 jumps regularly located over [0,1], and the initial tempera-
ture T0 during the time window [−τ, 0], the other parameters being fixed. We
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performed this estimation using data obtained from the two dynamics shown
in Figure 4.6. At each one of the locations x1 = 0.5, x2 = 0.7 and x3 = 0.9,
we randomly drew 50 epochs ti in the interval (−τ, tmax) and recorded the
temperatures T (tki, xk) at these epochs and locations. Using our observation
model defined by Equations (4.10–4.11), we constructed noisy observations
Yk(tki) of these temperatures. The exact temperatures at the exact times are
presented together with the measured values in Figure 4.7. Observed temper-
atures Yk(tki) for negative times were used to determine the prior distribution
of T0; see Equation (4.12) below. Observed temperatures Yk(tki) for positive
times were used to make the posterior inference.

t=5 kyt=0
T=-8°C

T=10°C

{Site 1

{Site 2

{Site 3

t=5 kyt=0
T=-15°C

T=+15°C

{Site 1

{Site 2

{Site 3

Fig. 4.7. Actual temperatures versus measured temperatures. At each site xk, k =
1, 2, 3, the upper row corresponds to the actual temperatures at the actual times
s(tk1), . . . , s(tkI), while the lower row corresponds to the measured temperatures at
targeted times tk1, . . . , tkI . Left: τ = 0.2 ky; Right: τ = 0.7 ky.

The joint distribution of the observations {Yk(tki), i = 1, . . . , I, k = 1, 2, 3} ,
conditional on the real temperatures {T (s(tki), xk), i = 1, . . . , I, k = 1, 2, 3}
can be written as a multiple integral (due to variables ηkj) which was assessed
using Monte Carlo integrations. Thus, the random variables ηkj were not ex-
plicitly inferred and a likelihood depending only on the unknowns α and T0
can be written.

We assumed independent uniform prior distributions in a sufficiently large
interval for the discretized values α1, . . . , α31 of α:

π(αm) ∼
indep.

Uniform(0, 1000).

For the sake of simplicity, we assumed that the prior distribution of T0 was a
Dirac distribution:

π(T0) ∼ Dirac(T obs0 ), (4.12)

where T obs0 is a constant obtained by averaging the observations Yk(tki) over
all negative times tki < 0 and k = 1, 2, 3. This means that T0 is constant in
space and time and takes the value T obs0 .

We drawn a sample from the posterior distribution of the parameters using
a MCMC algorithm with Metropolis-Hastings updates.
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4.3.3 Results

Figure 4.8 shows the marginal posterior quantiles of α(x), when τ = 0.2 ky
and τ = 0.7 ky. In both panels, the median of the posterior distribution is
quite close to the true values of the coefficient α(x). Moreover, the true values
do lie between the first and last deciles of the distribution, for all values of
x. Remember that observations were only made at three sites xk, and that
all three sites lie in the right half of the model domain, xk ∈ [0.5, 1]. This
restriction only seems to affect somewhat the estimation error of α(x) in the
left half of the model domain, x ∈ [0, 0.5], for τ = 0.2 ky.

Overall, the main difference between Figure 4.8 (left) and (right) is that
the marginal distribution is more variable in the case τ = 0.2 ky, for all x,
meaning that the insolation coefficient α(x) is harder to estimate in this case.
Such a result is somewhat surprising because the larger and faster variations
in the case τ = 0.7 ky lead to larger measurement errors; this can be easily
seen in Figure 4.7. A possible explanation for this result is that the solution of
(4.9) is much more sensitive to variations in the parameters when τ = 0.7 ky.
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Fig. 4.8. Marginal posterior quantiles of the parameter α(x). The red curve is
the posterior median of α(x), the magenta curves the first and last deciles of its
distribution, and the blue curves the first and last percentiles. The true values of
α(x) are given by the symbol +. Left: τ = 0.2 ky; Right: τ = 0.7 ky.
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Parameter estimation without likelihood

Author’s references: Soubeyrand et al. (2009a), Soubeyrand et al. (2013),
Soubeyrand and Haon-Lasportes (2015).

Fitting realistic, spatio-temporal, epidemiological models to data is of-
ten a difficult task because one generally has to handle, for example, latent
processes, spatial dependencies and heterogeneity in data. In the examples
provided in the previous chapters, we have seen solutions for handling such
complexities. Most of these solutions are based on the likelihood. However,
parameter estimation can be carried out without likelihood (or without the
use of the explicit form of the likelihood). These alternative approaches have
recently seen a renewal with the development of approximate Bayesian com-
putation (ABC; Marin et al., 2012).

In both the frequentist and the Bayesian frameworks, the likelihood func-
tion is one of the major components for statistical inference with a parametric
model. Its use, however, has drawbacks in specific situations. First, it may be
impossible to write down the likelihood in a numerically tractable form: see
the cases of Boolean models (Van Lieshout and Van Zwet, 2001), Markov
point processes (Møller and Waagepetersen, 2003), Markov spatial processes
(Guyon, 1985) and spatial generalized linear mixed models (spatial GLMM;
Diggle et al., 1998), where multiple integrals cannot be reduced due to spa-
tial dependencies. Second, the likelihood may not be completely appropriate
because of the associated assumptions. For instance, the likelihood is built
under distributional assumptions, which may be tricky to specify in the case
of insufficient information, as in classical geostatistics (Chilès and Delfiner,
1999); see also McCullagh and Nelder (1989, chap. 9) in regression analysis.
In the same vein, all data are assumed to have the same weights in the likeli-
hood, but the influence of outliers may be too large according to the analyst
(Markatou, 2000).

The difficulties encountered with the likelihood can be circumvented with
numerous frequentist and Bayesian algorithms and tools (e.g. MCEM, MCMC,
pseudo-likelihood maximization, quasi-likelihood maximization, weighted like-
lihood maximization, generalized least squares estimation, method of mo-
ments, approximate Bayesian computation (ABC)). If my general practice
is to adapt these approaches to the models and data I deal with, I have also
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been occasionally interested in their methodological development. Thus, this
chapter presents three topics concerning parameter estimation without like-
lihood. Section 5.1 presents the consequences of replacing the likelihood in
the Bayesian formula of the posterior distribution by a function of a con-
trast. Section 5.2 presents an algorithm for optimizing the distance between
functional summary statistics in ABC. Finally, Section 5.3 presents a study of
the weak convergence of posteriors conditional on maximum pseudo-likelihood
estimates and its implications in ABC.

5.1 Contrast-based posterior distribution

A contrast is a function of the model parameters and the observed data which
is minimized to estimate the parameters (Dacunha-Castelle and Duflo, 1982).
The minimum contrast approach is a generic estimation method, which was
developed in the frequentist perspective. The maximum likelihood estimation
as well as the maximum pseudo-, weighted- or quasi-likelihood estimation, the
diverse least squares methods, the method of moments and the M-estimation
can be formulated as minimum contrast estimation problems.

In Soubeyrand et al. (2009a), we replaced the likelihood appearing in the
Bayesian formula of the posterior distribution by a function of a contrast. This
procedure provides a contrast-based (CB) posterior distribution that does not
coincide, in the general case, with the classical posterior distribution. Thus,
we investigated what are the posterior distribution and the MAP (maximum
a posteriori) estimator based on a contrast.

Under mild conditions on the prior distribution, we show that the CB–
MAP estimator inherits the asymptotic properties (consistency and asymp-
totic normality) of the minimum contrast estimator, as the classical MAP
estimator inherits the asymptotic properties of the maximum likelihood esti-
mator (Caillot and Martin, 1972). The limit variance matrix of the normalized
estimator is I−1θ ΓθI

−1
θ where Γθ is the limit variance of the gradient of the

contrast and Iθ is the limit Hessian matrix of the contrast.
Moreover, we show that the CB–posterior distribution is asymptotically

equivalent to a normal distribution whose variance matrix is I−1θ . Therefore,
when building the contrast, particular attention must be paid to satisfy, if
possible, I−1θ ΓθI

−1
θ = I−1θ . Indeed, with such a contrast, inference can be

made without computing matrices Γθ and Iθ: the posterior distribution can
either be used as a limit distribution from a frequentist viewpoint or be used
to make inference in the Bayesian way. When building a contrast satisfying
I−1θ ΓθI

−1
θ = I−1θ is not possible, the CB–posterior distribution can never-

theless be used to estimate I−1θ . Thus, the computation of the limit Hessian
matrix of the contrast is avoided.
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5.1.1 Incorporating a contrast in the Bayesian formula

Consider a set of parametric models described by the corresponding set of
distributions {Pα : α ∈ Θ}. Consider samples of increasing sizes t ∈ T ⊂ N,
drawn from the distribution Pθ with the true parameter θ. A contrast for θ
is a random function α 7→ Ut(α) defined over Θ, depending on a sample of
size t, and such that {Ut(α) : t ∈ T} converges in probability, as t → ∞, to
a function α 7→ K(α, θ) which has a strict minimum at α = θ. The minimum
contrast estimator is:

θ̂t = argmin{Ut(α), α ∈ Θ}.

Let Xt = {Xi : i ≤ t} be a sample of size t drawn from a distribution in
{Pα : α ∈ Θ}. Then, the posterior distribution of α is:

p(α | Xt) =
Pα(Xt)π(α)∫

Θ
Pβ(Xt)π(β)dβ

,

where Pα(Xt) denotes the likelihood and π(·) is a prior distribution de-
fined over Θ. The contrast corresponding to the likelihood being U likt (α) =
− 1
t logPα(Xt) (Dacunha-Castelle and Duflo, 1982), the posterior distribution

can be written by replacing Pα(Xt) by exp(−tU likt (α)) in the previous equa-
tion.

Here, we propose to substitute the contrast associated with the likelihood
in the Bayesian formula with any contrast Ut(α). This leads to a contrast-
based (CB) posterior distribution denoted by pt(α):

pt(α) =
exp(−tUt(α))π(α)∫

Θ
exp(−tUt(β))π(β)dβ

. (5.1)

The CB–MAP estimator obtained by maximizing pt(·) is denoted by:

θ̃t = argmax{pt(α), α ∈ Θ}.

θ̃t is at the minimum of α 7→ Ut(α)−(1/t) log π(α) and, in general, does not co-

incide with the classical minimum contrast estimator θ̂t = argmin{Ut(α), α ∈
Θ}.

Below, we briefly present the asymptotic properties of the CB–MAP esti-
mator and the CB–posterior distribution.

5.1.2 Consistency and asymptotic normality of the CB–MAP
estimator

We noted above that the CB–MAP estimator θ̃t is at the minimum of
α 7→ Ut(α) − (1/t) log π(α). This function satisfies the definition of a con-
trast. Consequently, convergence properties of θ̃t can be easily obtained by
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using the contrast theory (Dacunha-Castelle and Duflo, 1982). Assume that
the hypotheses required for the convergence of the classical minimum contrast
estimator are satisfied. Let us assume in addition that the prior distribution
π(·) is proper, differentiable and strictly positive over Θ. It follows that, as
t→∞,

• θ̃t converges in probability to θ and
•
√
t(θ̃t− θ) converges in law to the Gaussian distribution N

(
0, I−1θ ΓθI

−1
θ

)
,

where Iθ and Γθ are matrices satisfying:

HUt(θ)→ Iθ in probability as t→∞
√
tgradUt(θ)→ N (0, Γθ) in law,

where H and grad are the Hessian and gradient operators, respectively.
The convergence results given above can also be obtained by noting that

the asymptotic deviation between the classical minimum contrast estimator
θ̂t and the CB–MAP estimator θ̃t is of order 1/t. More exactly, we have shown
that:

θ̃t − θ̂t =
1 + oproba(1)

tπ(θ)
I−1θ gradπ(θ). (5.2)

5.1.3 Convergence of the CB–posterior distribution

Under the assumption made above, the CB–posterior distribution pt(·) is
asymptotically equivalent to the density function of the Gaussian distribu-

tion N
(
θ̃t, (tIθ)

−1
)

:

pt(α) ∼
t→∞

1

(2π)p/2|(tIθ)−1|1/2
exp

(
−1

2
(α− θ̃t)′(tIθ)(α− θ̃t)

)
. (5.3)

This result allows us to figure out what the CB–posterior distribution is and
how it can be used to make inference in the frequentist and Bayesian ways.

In the contrast theory, the distribution N
(
θ̃t, (tIθ)

−1ΓθI
−1
θ

)
is used to

make frequentist inference about θ: the point estimator is θ̃t, and confi-
dence zones are provided based on this normal distribution. Consequently,
if the contrast is such that I−1θ ΓθI

−1
θ = I−1θ , then the CB–posterior distri-

bution pt(·), which approximates the density of N
(
θ̃t, (tIθ)

−1
)

, can be di-

rectly used to make frequentist inference about θ: the mode of pt(·) is the
point estimator, and confidence zones can be directly determined from pt(·).
This case is particularly interesting since the calculation of the limit matrices
Iθ = limt→∞HUt(θ) and Γθ = limt→∞ Vθ(

√
tgradUt(θ)) is no more required.

Moreover, when the contrast satisfies I−1θ ΓθI
−1
θ = I−1θ , then the CB–

posterior distribution pt(·) can be used to make inference in the Bayesian
way, i.e. to use pt(·) as a real posterior density. The motivation is based on
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the following analogy: when the contrast corresponding to the likelihood is
employed (in this case, I−1θ ΓθI

−1
θ = I−1θ ), then pt(·) can be used (i) to make

frequentist inference since it is an approximation of the limit distribution
of the estimator (see above) and (ii) to make Bayesian inference since it is
the classical posterior density. It has to be noted that, in general, the CB–
posterior density pt(·) does not coincide with the classical posterior density. It
is a posterior density based on the information brought by the contrast under
consideration.

If the contrast does not satisfy I−1θ ΓθI
−1
θ = I−1θ , then the CB–posterior

distribution pt(·) cannot be used to approximate the limit distribution of
θ̃t or to make Bayesian inference. However, pt(·) can be used to estimate
the matrix Iθ, so avoiding the calculation of the second derivatives of the
contrast. Indeed, one can see from (5.3) that an estimate of Iθ is the matrix
Ω−1/t where Ω is the variance matrix of the normal density function centered
around θ̃t and fitted to pt(·) (using a least square technique for example). If θ
is real, Iθ can be more simply estimated by 2πpt(θ̃t)

2/t since Equation (5.3)
yields pt(θ̃t) ∼

t→∞
(tIθ/2π)1/2. We have not found an equivalent way to easily

estimate Γθ. Thus, this matrix must be assessed with analytical calculation
of the second derivatives or with simulations.

5.1.4 Application to a Markovian spatial model

The simulation study presented here illustrates the application of the method
for estimating a bivariate parameter of a spatial model. Here, the CB–posterior
distribution is different from the limit distribution of the estimator; it cannot
be directly used to make inference but can be used for estimating Iθ.

We built a data set by simulating a spatial Markov field X with two states,
0 and 1. The model is defined by the conditional probability of Xi given Xj ,
j ∈ V (i) (V (i) is the set of the four nearest neighbors of i) satisfying (Guyon,
1985):

Pθ(Xi | Xj , j 6= i) =Pθ(Xi | Xj , j ∈ V (i))

=
exp

(
θ1Xi + θ2

∑
j∈V (i)XiXj

)
{

1 + exp
(
θ1 + θ2

∑
j∈V (i)Xj

)} .
The field was simulated on a n × n square grid I (here, t = n2 = 202); see
Figure 5.1 (left).

The classical likelihood cannot be analytically calculated for this model.
Therefore, a pseudo-likelihood was proposed to make inference (Guyon, 1985).
The pseudo-likelihood is the product of the conditional probabilities

∏
i∈I Pθ(Xi |

Xj , j 6= i). To estimate θ1 and θ2, we applied the estimation method proposed
above by using a uniform prior density over [−1.5, 1.5]2 and the contrast cor-
responding to the pseudo-likelihood:
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Un2(α) = − 1

n2

∑
i∈I

logPα(Xi | Xj , j ∈ V (i)). (5.4)

The CB–posterior density is shown in Figure 5.1 (center). The MAP estimate
is θ̃t = (−0.21, 0.38).

To give the limit distribution N (θ̃t, I
−1
θ ΓθI

−1
θ /n2) of the estimator, matri-

ces Γθ and Iθ must be estimated. We computed the gradient and the Hessian
of the contrast for N = 1000 Markov fields simulated under θ̃t, and we used
the sample variance of the gradients for estimating Γθ and the sample mean of
the Hessians for estimating Iθ. Thus, the estimate of the limit variance matrix
I−1θ ΓθI

−1
θ /n2 was: (

0.14 −0.055
−0.055 0.022

)
.

Figure 5.1 (right) shows the limit density function of the estimator together
with the 95%-confidence zone. We can see that the true parameter belongs to
this zone. Moreover, Figure 5.1 shows that the limit density is quite close to
the posterior density. The pseudo-likelihood, which takes into account short-
distance interactions, brings in this case almost the same information than
the likelihood. It has however to be noted that this would not be the case if
long-distance interactions had been introduced in the spatial Markov model.
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Fig. 5.1. Left: realization of a Markovian spatial process with two states
over a 20×20 grid. Center: contrast-based posterior density. Right: limit density
N (θ̃t, I

−1
θ ΓθI

−1
θ /n2). On the center and right panels, the MAP estimate and the

true parameter are drawn with a black dot and a circle, respectively. On the right
panel, the continuous line circumscribes the 95%-confidence zone.
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5.2 Approximate Bayesian computation with functional
statistics

In spatial statistics, one often relies on functional statistics to characterize spa-
tial patterns1. Similarly, in population genetics, spatial genetic structures are
often analyzed with functional statistics measuring the genetic differentiation
with respect to the geographic distance2.

Such functional statistics also enable the estimation of parameters of spa-
tially explicit (and genetic) models. Recently, Approximate Bayesian Com-
putation (ABC) has been proposed to estimate model parameters from func-
tional statistics. However, applying ABC with functional statistics may be
cumbersome because of the high dimension of the set of statistics and the de-
pendencies among them. To tackle this difficulty, we proposed in Soubeyrand
et al. (2013) an ABC procedure relying on an optimized weighted distance be-
tween observed and simulated functional statistics. We applied this procedure
to a dispersal model characterized by a functional statistic linking genetic
differentiation to geographic distance.

5.2.1 Background: the ABC–rejection procedure

Consider observed data D ∈ D which are assumed to be generated under the
stochastic model Mθ parametrized by θ ∈ Θ with prior density π. The data
space D and the parameter space Θ are both included in multidimensional
sets of real vectors.

The posterior distribution p(θ | D) can be estimated using the following
ABC–rejection algorithm (Rubin, 1984):

A1.Carry out the next two steps, independently for i in {1, . . . , I},
1. Generate θi from π and simulate Di from Mθi .
2. Accept θi if Di = D, reject it otherwise.

The set of accepted θi forms a sample from the posterior distribution

p(θ | D) =
f(D | θ)π(θ)∫

Θ
f(D | α)π(α)dα

,

where f(D | θ) is the conditional probability distribution function of D given
θ, i.e. the (intractable or unknown) likelihood of the model Mθ.

Algorithm A1 is rarely usable because the probability of generating Di
equal to D is very low when the dimensionality of the data space D is large and
this probability is even zero for continuous data. To circumvent this difficulty,

1 E.g. the Ripley’s K-function, the empty space function J , the nearest-neighbour
distance distribution function G (Illian et al., 2008).

2 E.g. the FST function (Rousset, 1997) and the ΦFT function (Austerlitz and
Smouse, 2002).
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two ideas have been applied: the introduction of a tolerance threshold3 and
the replacement of the raw data by summary statistics (Pritchard et al., 1999).
This leads to the following ABC–rejection algorithm:

A2.Carry out the next three steps, independently for i in {1, . . . , I},
1. Generate θi from π and simulate Di from Mθi .
2. Compute the statistic Si = s(Di), where s is a function from D to the

space S of statistics.
3. Accept θi if d(Si, S) ≤ ε(τ), where d is a distance over S and ε(τ) ∈ R+

is a tolerance threshold for the distance between the observed statistic
S = s(D) and the simulated ones. The threshold ε(τ) depends on the
proportion τ of accepted θi among the I simulated parameters; ε(τ) is
the empirical quantile of order τ . Thereafter, τ is called the acceptance
rate.

The set of accepted parameters, say Θτ,I = {θi : d(Si, S) ≤ ε(τ), i = 1, . . . , I},
forms a sample from the posterior distribution

pε(τ)(θ | S) =

(∫
B(S,ε(τ))

f̃(z | θ)dz
)
π(θ)∫

Θ

(∫
B(S,ε(τ))

f̃(z | α)dz
)
π(α)dα

, (5.5)

where f̃(S | θ) is the conditional probability distribution function of S given
θ and B(S, ε(τ)) is the ball with center S and radius ε(τ) in the space S with
distance d.

When ε(τ) tends to zero, pε(τ)(θ | S) may be a good approximation of the
posterior distribution conditional on the statistic4, i.e.

p(θ | S) =
f̃(S | θ)π(θ)∫

Θ
f̃(S | α)π(α)dα

, (5.6)

and the sample Θτ,I of accepted parameters is approximately distributed un-
der this posterior distribution. If, in addition, the statistics are sufficient, then
f̃(S | θ) = f(D | θ) and Θτ,I is approximately a sample from the classical
posterior distribution p(θ | D) conditional on the data.

5.2.2 Selecting a weight function for functional statistics

Suppose now that S is a functional statistic in the space S of statistics, which
is included in the space of real-valued and square-integrable functions defined
over R:
3 We can guess that Rubin (1984) already suggested the application of a tolerance

threshold since he used the inaccurate expressions “look just like” and “match”
to compare the simulated and observed data.

4 This can be shown under regularity assumptions about the conditional probability
distribution function S 7→ f̃(S | θ) of S given θ. However, such assumptions
cannot be checked in usual applications of ABC where f̃ is generally analytically
intractable.
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S ⊂
{
g : R→ R,

∫
R
g2 <∞

}
.

Besides, we assume that the distance d : S2 → R+, used in algorithm A2 to
compare observed and simulated statistics, is parametrized by a non-negative
weight function w : R→ R+ and satisfies:

d(Si, S;w) =

∫
R
w(r){Si(r)− S(r)}2dr. (5.7)

The weight function is expected to modulate the squared difference between
Si(r) and S(r) with respect to the information about the parameters brought
by the statistics at r. In the applications that we tackled, w is in sets of positive
piecewise constant functions with finite number of jumps, with known jump
locations and with integral over R equal to one. Thus, in the optimization of
w, which is proposed below, we have to select a finite number of jump levels.

The weight function that we proposed is the optimized function wopt ob-
tained by minimizing a mean square error (MSE) of a point estimate of θ
(Rohatgi, 2003, chap. 4). The MSE that we used is a Bayesian MSE (BMSE):
the square error is integrated over Θ with respect to the prior distribution π.
This approach, detailed below in algorithm A3, is analogous to minimizing
the mean square error of prediction where θ is the random variable to be
predicted (McCulloch and Searle, 2001, chap. 9).

The optimized weight function wopt as well as an optimized acceptance
rate τopt are determined within the following ABC–rejection algorithm:

A3.Carry out the next four steps,
1. For i in {1, . . . , I}, independently generate θi from π, simulate Di from
Mθi and compute the functional statistic Si = s(Di);

2. For j in {1, . . . , J}, independently generate θ′j from π, simulate D′j from
Mθ′j

and compute the functional statistic S′j = s(D′j);
(θ′j , S

′
j), j = 1, . . . , J , will be used as pseudo-observed data sets (PODS)

for optimizing the weights and the acceptance rate;
3. Select the weight function and the acceptance rate which minimize the

following BMSE criterion:

BMSEJ(w, τ) =
1

J

J∑
j=1

K∑
k=1

(θ̂′jk(w, τ)− θ′jk)2

V (θ′jk)
. (5.8)

In (5.8), θ′jk, k = 1, . . . ,K, are the K components of θ′j (Θ ⊂ RK ,
K ≥ 1); V (θ′jk) is the prior variance of θ′jk depending only on π and
allows the scaling of the parameter components; the point estimates
θ̂′jk(w, τ) are the marginal posterior medians of θ′jk:

θ̂′jk(w, τ) = Median{θik : d(Si, S
′
j ;w) ≤ ε(τ), i = 1, . . . , I},
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obtained by applying the last step of algorithm A2 with S′j for the
observed statistic, Si for the simulated statistics, d(·, ·;w) for the dis-
tance and τ for the acceptance rate. The BMSE is minimized over the
space function W = {w : R→ R+,

∫
R w = 1} and the interval (0, 1]:

(wopt, τopt) = argminw,τ∈W×(0,1]BMSEJ(w, τ). (5.9)

4. For i in {1, . . . , I}, accept θi if d(Si, S;wopt) ≤ ε(τopt).

The set of accepted parameters Θopt = {θi : d(Si, S;wopt) ≤ ε(τopt), i =
1, . . . , I} forms a sample from the posterior distribution (5.5) with ε(τ) =
ε(τopt) and with B(S, ε(τ)) equal to the ball with center S and radius ε(τopt)
in the space S with distance d(·, ·;wopt). Thus, weighting the distance modifies
the posterior under which the accepted parameters are drawn. However, when
ε(τopt) tends to zero, the new posterior distribution (like the one given in
Equation (5.5)) may be a good approximation of p(θ | S) given in Equation
(5.6).

Note that the BMSE in Equation (5.8) is the Monte-Carlo approximation

of the exact BMSE equal to
∑K
k=1E{(θ̂′jk(w, τ)−θ′jk)2}/V (θ′jk). Besides, other

criteria than the BMSE may be used to select w and τ , e.g. mean square errors
or mean absolute errors based on the posterior mode, the posterior mean or
posterior quantiles.

In applications, w is a positive piecewise constant functions with a finite
number of jumps, with known jump locations and with integral over R equal
to one. Therefore, the optimization program (5.9) consists in minimizing the
BMSE with respect to a finite number of jump levels and the acceptance rate
τ . This optimization was carried with the Nelder-Mead algorithm (Nelder and
Mead, 1965) modified to take into account the linear constraints over the jump
levels and τ .

5.2.3 Using a pilot ABC run

After a first (pilot) run of algorithm A3, which yields a pilot posterior sample,
namely Θpilot, one may proceed to a second selection of the weight function
and the acceptance rate by restricting the computation of the MSE to simu-
lations close to Θpilot. This approach, detailed in Appendix, is based on the
minimization of a partial mean square error (PMSE), which depends on Θpilot,
and can be implemented without supplementary simulation. In what follows,
the algorithm including the pilot ABC run is denoted by A4.

5.2.4 Application to a dispersal model

Algorithm A3 and A4 were applied to simulated data (namely, a simple step-
model and a modified Thomas process). The performance of the optimized
weight function was compared with the performance of the constant weight
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function and the weight function obtained by equalizing the variances of the
statistics, which are common weight functions in ABC. We also compared our
approach with algorithm A2 including a prior transformation of summary
statistics via the PLS method (Wegmann et al., 2009), the minimum entropy
method and the two-stage method (Nunes and Balding, 2010). Essentially,
these approaches reduce the dimension of the summary statistics to avoid the
negative impact of uninformative or correlated statistics on inference accu-
racy. Overall, Algorithms A3 and A4 were better than the other approaches
for most of the tested performance criteria, and A4 was better than A3. This
advantage was certainly obtained because A3 and A4 take into account de-
pendencies between values of the functional statistic along the support of the
function, and are based on a quantitative weighting of statistics.

ABC is known to be a computer intensive approach. In this regard, we
showed that, with the optimized weights (without pilot study), we can run
ten times fewer simulations and reach an estimation accuracy equal to the
one obtained with the constant weights. This result is particularly useful when
simulations are very time consuming5. The use of a pilot ABC allows to reduce
the number of simulations required to reach a given level of inference accuracy,
however, the risk with such an iterative procedure is that the pilot study
results in an overly narrow region in the space of parameters.

We applied our approach to fit a dispersal model of pollen. In this ap-
plication, raw data consisted of genetic information from molecular markers
collected from a set of wild-service trees (Sorbus torminalis) sampled in a
delimited area. The functional statistics that we used in the implementation
of ABC was the observed ΦFT function, which provides a measure of pairwise
genetic differentiation with respect to pairwise geographic distance. Details of
the model and data are not described here6. Figure 5.2 shows the observed
functional statistics, the optimized weight function and the posterior sample
obtained from Algorithm A4 for the dispersal parameters. In this application,
the gain in using the optimized weight function exists but is moderate, be-
cause the functional statistics is particularly noisy (see Figure 5.2, top). For
more regular functional statistics7, for which dependencies along the support
of the function are higher, the gain can be larger.

5 In our applications, for 105 simulations, the optimizations took a few hours or
less with a desktop computer

6 See Soubeyrand et al. (2013) for detailed information about the model and data.
7 An example of more regular functional statistics is the pair correlation function

used in Soubeyrand et al. (2013) for inferring parameters of the modified Thomas
process.
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Fig. 5.2. Top: Observed ΦFT function, which provides a measure of pairwise ge-
netic differentiation with respect to pairwise geographic distance; this functional
statistic is used in Algorithm A4 to estimate the parameters of a pollen dispersal
model. Bottom left: optimized weight function (solid line) to be compared with the
constant weight function (dashed line). Bottom right: joint prior distribution (con-
tour lines and grey dots) and joint posterior distribution (black dots) of the model
parameters, namely the mean distance parameter and the shape parameter of a
power-exponential dispersal kernel.

5.3 A Bernstein-von Mises theorem for Approximate
Bayesian computation

In ABC, the choice of summary statistics and the distance between the sum-
mary statistics is crucial in regards to inference accuracy. The section above
deals with the choice of the distance between summary statistics. In this new
section, we are interested in the choice of summary statistics themselves. More
specifically, we are interested in the case where (some of) the summary statis-
tics are point estimates of parameters (PEP), as in Drovandi et al. (2011),
Fearnhead and Prangle (2012), Gleim and Pigorsch (2013) and Mengersen
et al. (2013).

In the classical Bayesian framework, posteriors conditional on PEP can
be viewed as specific cases of posteriors conditional on partial information
(Doksum and Lo, 1990; Soubeyrand et al., 2009a). In Soubeyrand and Haon-
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Lasportes (2015), we provide new results of weak convergence when PEP are
either maximum likelihood estimates (MLE) or pseudo-maximum likelihood
estimates (MPLE). The case where PEP are MPLE is of specific interest
because, in ABC, it may be possible to compute MPLE via simplifications
of the dependence structure in the model and to use MPLE as summary
statistics.

The results of weak convergence that we provided can be viewed as new ex-
tensions of the Bernstein – von Mises (BvM) theorem. For parametric models,
from which independent observations are made, the BvM theorem (i) states
conditions under which the posterior distribution is asymptotically normal
and (ii) subsequently leads to the efficiency of Bayesian point estimators and
to the convergence of Bayesian confidence sets towards frequentist limit con-
fidence sets (Walker, 1969; Freedman, 1999). Thus, the BvM theorem can
be viewed as a frequentist justification of posterior distributions for the esti-
mation of parameters. Numerous extensions of the BvM theorem have been
proposed, for instance, when the model is semiparametric or nonparametric
(Bickel and Kleijn, 2012; Bontemps, 2011; Castillo and Nickl, 2013; Rivoirard
and Rousseau, 2012), when observations are dependent (Borwanker et al.,
1971; Tamaki, 2008), when the model is misspecified (Kleijn and van der
Vaart, 2012) and when the model is nonregular (Bochkina and Green, 2014).

In Soubeyrand and Haon-Lasportes (2015), we extended the BvM theorem
(i) when raw observations are replaced by the MLE or an MPLE and (ii) when
the posterior conditional on an MPLE is approximated via ABC. The BvM
extensions obtained in the classical Bayesian framework (Point (i)) are step-
ping stones that lead to the BvM extension obtained in the ABC framework
(Point (ii)). Advancing theory in ABC has generally no direct practical impli-
cations because assumptions that may be required to prove theorems cannot
be checked for a real-life implicit stochastic model whose distribution theory
is intractable. However, showing an analytic result for a large class of theoret-
ically tractable models may lead to conjecture that the result holds for some
stochastic implicit models. Specifically, the work presented below allows us to
conjecture that (i) an ABC–posterior distribution conditional on an MPLE is
asymptotically normal and centered around the MPLE and (ii) resulting point
estimates and confidence sets converge towards their frequentist analogues.

5.3.1 Notation

We use notation introduced in Section 5.2 and simply remind here that ob-
served data are denoted by D ∈ D. Let p(D | θ) denote the likelihood of the
model and p(θ | D) = p(D | θ)π(θ)/p(D) the full sample posterior of the

parameter vector θ ∈ Θ. The vector θ̂ML ∈ Θ is the maximum likelihood
estimate (MLE) of θ: θ̂ML = argmax

θ∈Θ
p(D | θ). The posterior of parame-

ters conditional on the MLE is p(θ | θ̂ML) = p(θ̂ML | θ)π(θ)/p(θ̂ML), where

p(θ̂ML | θ) is the p.d.f. of the MLE given θ. Besides, we are interested in mod-
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els whose likelihoods are not tractable because of the dependence structure in
the data, but for which we can build tractable pseudo-likelihoods, say p̃(D | θ).
A pseudo-likelihood is generally built by ignoring some of the dependencies in
the data (Gaetan and Guyon, 2008; Gourieroux et al., 1983). Let the vector

θ̂MPL ∈ Θ denotes the maximum pseudo-likelihood estimate (MPLE) of θ:

θ̂MPL = argmax
θ∈Θ

p̃(D | θ). The posterior of parameters conditional on the

MPLE is p(θ | θ̂MPL) = p(θ̂MPL | θ)π(θ)/p(θ̂MPL), where p(θ̂MPL | θ) is the
p.d.f. of the MPLE given θ.

5.3.2 Posterior conditional on the MLE

The full sample posterior p(θ | D) and the posterior conditional on the MLE

p(θ | θ̂ML) exactly coincide in specific cases (e.g. when the MLE are suffi-
cient statistics), but do not coincide in general. In this section, we provide an

asymptotically equivalent distribution for p(θ | θ̂ML).
Following Walker (1969) and Lindley (1965, p. 130), we consider a set

D = (D1, . . . , Dn) of n i.i.d. variables drawn from a parametric distribution
with density f(· | θ) with respect to a σ-finite measure on the real line, where
θ is in Θ ⊂ Rq. Under this setting and additional regularity conditions, the
BvM theorem establishes the asymptotic normality of the full sample posterior
(Walker, 1969, Theorem 2 and conclusion): the full sample posterior density
of θ is, for large n, equivalent to the normal density with mean vector equal
to the MLE θ̂ML and covariance matrix equal to Ωn(θ̂ML)−1:

p(θ | D) ∼
n→∞

φθ̂ML,Ωn(θ̂ML)−1(θ),

where φµ,Σ denotes the density of the normal distribution with mean vector
µ and covariance matrix Σ, and Ωn(α) is the q× q matrix with element (i, j)
equal to

(
−∂2 log p(D | θ)/∂θi∂θj

)
θ=α

.

To provide an asymptotically equivalent distribution for p(θ | θ̂ML) as
in BvM theorems, we assume in Lemma 5.1 (see below) that the MLE is
asymptotically normal and consistent. For example, consider the same sta-
tistical model than above and assume that assumptions made in Lehmann
and Casella (1998, Theorem 5.1 of the MLE asymptotic normality, p. 463)
are satisfied. In particular, assume that data were generated with parameter
vector θ. Then, the density of θ̂ML is, for large n and given θ, equivalent to
the normal density with mean vector equal to the true parameter vector θ
and covariance matrix equal to n−1I(θ)−1:

p(θ̂ML | θ) ∼
n→∞

φθ,n−1I(θ)−1(θ̂ML). (5.10)

where I(θ) denotes the q × q Fisher information matrix.

Lemma 5.1 (Asymptotic normality of the posterior conditional on
the MLE). Suppose that the MLE satisfies Equation (5.10) with non-singular
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matrix I(θ). Under regularity assumptions8, when n→∞, the posterior den-

sity p(θ | θ̂ML) conditional on the MLE is asymptotically equivalent to the

density of the normal distribution with mean vector θ̂ML and covariance ma-
trix n−1I(θ̂ML)−1 over a subset Bn of Θ whose measure with respect to this
normal density is asymptotically one in probability:

p(θ | θ̂ML) ∼
n→∞

φθ̂ML,n−1I(θ̂ML)−1(θ), ∀θ ∈ Bn

lim
n→∞

∫
Bn

φθ̂ML,n−1I(θ̂ML)−1(θ)dθ =
P

1.

Thus, over the subset Bn, which asymptotically contains all the mass of
the normal density φθ̂ML,n−1I(θ̂ML)−1(·), the posterior conditional on the MLE
is asymptotically equivalent to this normal distribution.

From a frequentist point of view, the BvM theorem, which concerns the
full sample posterior p(θ | D), is a justification of the Bayesian approach for
parameter estimation since the Bayesian confidence sets asymptotically coin-
cide with the frequentist limit confidence sets (Freedman, 1999). Lemma 5.1

shows a similar result for the posterior conditional on the MLE p(θ | θ̂ML).
Thus, Lemma 5.1 can also be viewed as a justification of the use of the pos-
terior conditional on asymptotically normal MLE for parameter estimation.
Note that results similar to the one provided by Lemma 5.1 have already been
obtained for the estimation of an univariate location parameter; see Doksum
and Lo (1990) and references therein.

5.3.3 Posterior conditional on an MPLE

We then obtained the following lemma which is analogous to Lemma 5.1 but
which concerns an MPLE.

Lemma 5.2 (Asymptotic normality of the posterior conditional on
an MPLE). Assume that, given the vector θ under which the data D were

generated, the p.d.f. of the MPLE θ̂MPL is equivalent to the normal density
with mean vector θ and covariance matrix g(n)−1J(θ)−1:

p(θ̂MPL | θ) ∼
n→∞

φθ,g(n)−1J(θ)−1(θ̂MPL),

where g is a positive increasing function such that g(n) → ∞ and J(θ) is
a positive-definite matrix. Under regularity assumptions9, when n → ∞, the
posterior density p(θ | θ̂MPL) conditional on the MPLE is asymptotically

equivalent to the density of the normal distribution with mean vector θ̂MPL and
covariance matrix g(n)−1J(θ̂MPL)−1 over a subset Bn of Θ whose measure
with respect to this normal density is asymptoticallyone:

8 See Soubeyrand and Haon-Lasportes (2015) for details.
9 See Soubeyrand and Haon-Lasportes (2015) for details.
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p(θ | θ̂MPL) ∼
n→∞

φθ̂MPL,g(n)−1J(θ̂MPL)−1(θ), ∀θ ∈ Bn

lim
n→∞

∫
Bn

φθ̂MPL,g(n)−1J(θ̂MPL)−1(θ)dθ = 1.

Lemma 5.2 justifies the use of the posterior conditional on the MPLE for
parameter estimation because the Bayesian confidence sets that are provided
by this posterior asymptotically coincide with the frequentist limit confidence
sets obtained by maximizing the pseudo-likelihood.

The asymptotic normality of the MPLE required in Lemma 5.2 has been
obtained for various models, especially random Markov fields and spatial point
processes; see Gaetan and Guyon (2008, chap. 5), Gourieroux et al. (1983),
Møller and Waagepetersen (2003, chap. 9) and references therein. It has to be
noted that information is lost when MPLE are used rather than MLE and,
consequently, that estimation accuracy is decreased (e.g. this has been shown
for simple Markovian models using asymptotic estimation variances (Gaetan
and Guyon, 2008, chap. 5)).

5.3.4 Approximate posterior conditional on an MPLE

Here, we derive implications of Lemma 5.2 in the framework of ABC when
(some of) the summary statistics are MPLE. We consider the (simple) ABC–
rejection algorithm A2 described in Section 5.2. The set of accepted param-
eters, say Θε,I = {θi : d(Si, S) ≤ ε, i = 1, . . . , I}, forms a sample from the
posterior pε(θ | S), where ε is the tolerance threshold and S = s(D) is the set
of summary statistics.

Theorem 5.3 (Asymptotic normality of the ABC–posterior condi-
tional on an MPLE). Consider the ABC–rejection algorithm that samples

in the posterior pε(θ | θ̂MPL) of θ conditional on the vector of summary statis-

tics S = θ̂MPL. Assume that when ε → 0, pε(θ | θ̂MPL) converges pointwise

to p(θ | θ̂MPL). Then, under assumptions of Lemma 5.2, when n → ∞ and

ε → 0, the posterior pε(θ | θ̂MPL) is asymptotically equivalent to the den-

sity of the normal distribution with mean vector θ̂MPL and covariance matrix
g(n)−1J(θ̂MPL)−1 over a subset Bn of Θ whose measure with respect to this
normal density goes to one in probability and that does not depend on ε:

pε(θ | θ̂MPL) ∼
n→∞,ε→0

φθ̂MPL,g(n)−1J(θ̂MPL)−1(θ), ∀θ ∈ Bn

lim
n→∞

∫
Bn

φθ̂MPL,g(n)−1J(θ̂MPL)−1(θ)dθ =
P

1.

As explained in the introduction of this section, this result leads us to
conjecture that, for some stochastic implicit models, (i) the ABC–posterior
distribution conditional on an MPLE is asymptotically normal and centered
around the MPLE and (ii) resulting point estimates and confidence sets con-
verge towards their frequentist analogues. We also provided in Soubeyrand
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and Haon-Lasportes (2015) an analogous result when the MPLE is used in
conjunction with supplementary statistics.

5.3.5 Application to a toy example

The simplified example presented here illustrates the application of ABC con-
ditional on an MPLE and a supplementary statistic. The model Mθ under
consideration is the following bivariate normal distribution:

N
(
( µµ ) ,

( 1 ρ
ρ 1

))
,

parameterized by the mean µ and the correlation ρ; we set θ = (µ, ρ). Observed

data D = {(D(1)
k , D

(2)
k ) : k = 1, . . . , n} are n = 100 vectors independently

drawn under this normal distribution with µ = 0 and ρ = 0.5. We use a
uniform prior distribution π over the rectangular domain (−3, 3) × (−1, 1).
The maximum likelihood estimates of µ and ρ are the empirical mean of

(D
(1)
k + D

(2)
k )/2 and the empirical correlation of (D

(1)
k , D

(2)
k ), k = 1, . . . , n.

Here, we applied ABC with the two following statistics:

S = s(d) =

(
µ̂MPL

S0

)
=

1

n

n∑
i=1

(
D

(1)
k

1{sign(D
(1)
k ) = sign(D

(2)
k )}

)
,

where µ̂MPL is an MPLE of µ that uses only partial information contained
in the sample (i.e. only the first component of sampled vectors), and S0 is a
supplementary statistic that gives the mean number of vectors in the sample

whose components D
(1)
k and D

(2)
k have the same sign (1{·} is the indicator

function).
To assess the convergence of ABC when ε tends to zero, we applied

ABC with varying ε, with I = 105 simulations, and with the distance
d(Si, S) = (µ̂MPL,i − µ̂MPL)2 + (S0,i − S0)2, where Si = (µ̂MPL,i, S0,i) is the
vector of statistics computed for the simulation i. As usual in ABC–rejection,
instead of fixing ε, we fixed the sample size τ of the posterior sample (i.e.
the number of accepted parameter vectors); note that ε decreases when τ de-
creases. The sample size τ was fixed at values ranging from 10 to 5000. For
each value of τ , we computed the local posterior probability10 (LPP) around
the true parameter vector θ = (0, 0.5). We expect that this LPP increases
with the efficiency of the inference procedure. The LPP was computed for
50000 datasets and Figure 5.3 shows its mean and standard deviation when τ
varies. The mean LPP around the true parameters increases when the sample
size τ (and ε) tends to zero; meanwhile, the dispersion of the LPP increases.
This is the signature of the classical bias–variance trade-off.

10 The LPP around the true parameter vector is defined as the proportion of ac-
cepted parameter vectors in the small rectangle [−0.015, 0.015]× [−0.005, 0.005]
whose center is θ = (0, 0.5) and whose sides are 200 times smaller than the sides
of the parameter space (−3, 3)× (−1, 1).
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Fig. 5.3. Mean (solid line), pointwise 95%-confidence envelopes (dashed lines) and
standard deviation (dotted line) of the local posterior probability around the true
parameter vector θ = (0, 0.5) as a function of sample size τ .

To automatically select the sample size τ and optimize the distance be-
tween summary statistics, we applied the procedure presented in Section 5.211.
Thus, the distance is weighted: d(Si, S;w1, w2) = w1(µ̂MPL,i − µ̂MPL)2 +
w2(S0,i − S0)2, and the triplet (τ, w1, w2) is optimized under constraints us-
ing the BMSE. For one of the 50000 datasets simulated above, Figure 5.4
shows ABC–posterior samples obtained when d is not weighted and τ is fixed
at 5000, 1000 and 200, and when d is weighted and (τ, w1, w2) is optimized.
The red contour line shows the smallest 95%-posterior area obtained with
the classical Bayesian computation. The first three panels illustrate the bias–
variance trade-off when τ tends to zero. The fourth panel illustrates the dif-
ference between the classical Bayesian inference conditional on all data and
the ABC inference conditional on partial information and with optimized τ
(here τ = 585). The relevancy of the optimized sample size τ = 585 can be
seen by projecting this value on Figure 5.3: (i) the expected LPP around the
true parameters is comparable to expected LPP obtained with lower τ , and
(ii) the standard deviation of the LPP is strongly decreased compared with
standard deviations obtained with lower τ .

5.3.6 ABC, MPLE and real-life studies

The asymptotic results presented above were obtained for a large but limited
class of models satisfying regularity assumptions. In real-life studies where
ABC is applied, these assumptions cannot be checked and, consequently, our

11 The procedure presented in Section 5.2 was developed for functional statistics but
can obviously be adapted to vectors of statistics.
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Fig. 5.4. ABC–posterior samples (dots) obtained when d is not weighted and τ
is fixed at 5000 (top left), 1000 (top right) and 200 (bottom left), and when d is
weighted and (τ, w1, w2) is optimized (bottom right). In each panel, dashed lines
are intersecting at the true value (0, 0.5) of the parameter vector θ = (µ, ρ) and the
red contour line gives the smallest 95%-posterior area obtained with the classical
Bayesian computation.
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asymptotic results may not hold. Therefore, it is crucial (i) to combine MPLE
and supplementary summary statistics to tend to a set of sufficient summary
statistics (Joyce and Marjoram, 2008) and (ii) to apply a method for selecting,
weighting or transforming the summary statistics to avoid to take into account
non-relevant statistics (in the toy example, we applied the approach presented
in Section 5.2).

The strong implication of using MPLE as summary statistics in ABC is
that an analytic work has to be made: the dependence structure of the model
has to be simplified to write a tractable pseudo-likelihood and, eventually, to
find an analytic expression for the maximizer. This additional work is how-
ever expected to yield relevant summary statistics directly informing (a subset
of) the parameters. To illustrate the interest of combining ABC and MPLE in
real-life examples, I started to study how to derive MPLE for parameters aris-
ing in dispersal models used to analyze metapopulation data. Indeed, it should
be possible to obtain rapidly-computable MPLE for these models because they
can be transformed into simple GLM by ignoring some dependencies induced
by the dispersal kernel.
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Miscellaneous

6.1 Snapshot of other contributions

6.1.1 Statistical tests

Mrkvička et al. (2012) proposed a testing procedure for marked spatial point
processes with non-stationary marks. The objective of the test is to assess the
goodness-of-fit of the mark distribution when this distribution depends on
an unknown parameter vector that is spatially heterogeneous. The proposed
procedure was applied, for instance, to a marked spatio-temporal point process
related to the Classic Maya collapse.

Soubeyrand et al. (2014a) provides statistical tools to analyze fragmented
time directionality in time series and the spatial distribution of this direc-
tionality. These tools are available in the R-package FeedbackTS available on
CRAN (https://cran.r-project.org/web/packages/FeedbackTS/) and were
used to elucidate feedbacks processes in historical1 daily rainfall data col-
lected in Australia and the USA; see also Bigg et al. (2015) and the website
http://w3.avignon.inra.fr/rainfallfeedback/.

Soubeyrand et al. (2014c) proposed a method to rank pathogen strains
in regard to their contribution to natural epidemics, and to assess the sta-
tistical significance of the ranking. This approach, which links genetic data
(i.e. the genetic diversity of the pathogen) and epidemiological data (i.e. the
spatio-temporal spread of the disease), was applied to assess the epidemiolog-
ical performance of several strains of powdery mildew collected from its host
plant Plantago lanceolata. It is implemented in the R-package StrainRanking

(https://cran.r-project.org/web/packages/StrainRanking/).
Kretzschmar et al. (2010) proposed a permutation-based testing procedure

to study the spatial structure of a population observed in non-Euclidean space,
such as a tree. This procedure was applied to investigate the aggregation
patterns of aphids on Citrus trees.

1 These data are daily rainfall measurements collected over approximately 100
years.
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6.1.2 Spatio-temporal modeling

Penczykowski et al. (2015) investigated the link between winter conditions and
the metapopulation dynamics of powdery mildew on its host plant Plantago
lanceolata in Åland archipelago. A particular focus was put on the effect of
winter conditions on the spatial synchrony of the pathogen. In this study,
we developed a stochastic patch occupancy model allowing us to explore the
effect of warmer winters on the synchrony pattern.

Crété et al. (2013) proposed a continuous time-and-state epidemic model
and an associated estimation method that allowed the fitting of the model to
ordinal categorical data observed at discrete times. This approach was applied
to analyze the spatio-temporal dynamics of apple scab.

6.1.3 Temporal modeling

Dussaubat et al. (2013) studied the effect of the parasite Nosema ceranae
on honey bee workers. In this study, we developed a stochastic, mechanistic
temporal model of bee activity fitted to time series providing the daily number
of exits from the hive. To avoid making distributional assumptions, the model
was fitted with a quasi-likelihood approach and demonstrated the negative
effect of the parasite on the duration of bee activity.

Soubeyrand et al. (2007a) proposed a temporal survival model with time-
varying covariates for analyzing the survival of mosquitofish. The model was
fitted to group and time-period censored data and allowed for the character-
ization of the evolution of daily survival probability of mosquitofish during
their growth.

6.1.4 Residual analysis

During my PhD I worked on the use of residuals to specify the distributional
properties of latent processes included in hierarchical models. Soubeyrand
et al. (2006) developed such a method for mixed models and frailty models
with group random effects (i.e. random effects that are constant within groups
of observations). Soubeyrand and Chadœuf (2007) developed the residual-
based specification of hidden random fields included in hierarchical spatial
models.

6.1.5 R packages

Recently, I have implemented some methods into R packages. These packages
are briefly described in this section.

The StrainRanking package (available on R CRAN repository) utilizes de-
mographic and genetic data collected during epidemics to rank pathogen
strains with respect to their contribution to the epidemics (Soubeyrand et al.,
2014c).
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The FeedbackTS package (available on R CRAN repository) provides ex-
ploratory tools for the analysis of feedback (i.e. fragmented time directional-
ity) in a single time series and in a set of time series collected across a spatial
domain (Soubeyrand et al., 2014a).

The CloNcaSe package proposes a method to estimate the effective size
and sex rate of a partially clonal population sampled at two different times
(Ali et al., 2016).

The GMCPIC package (Generalized Monte Carlo plug-in test with calibra-
tion) proposes a computer intensive procedure to test the equality of two
unknown vectors of probabilities p1 and p2. The GMCPIC package was specifi-
cally developed to test differences between pathogen compositions with small
samples and sparse data.
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6.2 Supervision

I have supervised the internships of 5 Master students and 2 Licence students.
Most of these students followed programs in applied statistics. In addition, I
have (co-)supervised 3 postdoctoral fellows and 2 PhD students presented in
the following table.

Supervision of PhD students and postdoctoral fellows
Period Description

2015 Advisor of E. Walker (Postdoc)
Construction and R-packaging of a spatial exposure-hazard model

2014 Advisor of M. Leclerc (Postdoc)
Estimation of the contribution of genetically modified maize
to the large-scale mortality of non-target Lepidoptera

2012–2015 Co-advisor of L. Rimbaud (PhD)
Model-based design and assessment of management strategies
for epidemics in a heterogeneous landscape

2012–2013 Advisor of V. Garetta (Postdoc)
Statistical analysis of re-emergence of plant pathogens

2007–2010 Co-advisor of V. Georgescu (PhD)
Model-based clustering for multivariate and mixed-mode data:
Application to multi-species spatial ecological data

L. Rimbaud wrote two articles: Rimbaud et al. (2015b) provided a re-
view about sharka epidemiology with a focus on the optimization of control
strategies, and Rimbaud et al. (2015a) proposed a method to estimate the
mismatch between incubation and latency periods and applies this method
to the sharka virus. L. Rimbaud is also preparing two other articles apply-
ing sensitivity analysis methods to investigate the efficiency of management
strategies for sharka.

V. Georgescu wrote two articles and one technical report: Georgescu et al.
(2009) developed a statistical approach based on model-based classification
and tools of spatial statistics to explore assemblages of species abundances;
Georgescu et al. (2014) and Georgescu et al. (2015) proposed automated
MCEM algorithms for estimating the parameters of hierarchical models with
multivariate and multitype response variables.
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6.3 Teaching

My main activity is research. However, I have been involved in a few teaching
programs which are listed in the following table.

Teaching
Period Description

2011–2013 Participation in the construction and supervision
of the BIOBAYES training school
(Initiation to Bayesian statistics for researchers in biology)
INRA; the one-week training school was organized once in 2011
and once in 2013

2008–2011 Participation in a lecture about Modeling in Life Science
Master 2 at Centrale School of Marseille, 18h

2003–2005 Training lesson in Probability and Statistics
Licence 2 at the University of Avignon, 68h

2002–2003 Training projects in Statistics
Licence 3 at ENSAI, Rennes, 10h

The training school BIOBAYES, which is cited in this table, led us to write
a textbook about Bayesian statistics under the name Collectif BIOBAYES.
The complete reference is:

Collectif BIOBAYES (2015). Initiation à la Statistique Bayésienne – Bases
Théoriques et Applications en Alimentation, Environnement, Epidémiologie
et Génétique. Editions Ellipses.

The Collectif BIOBAYES is formed by Albert I., Ancelet S., David O., Denis
J.-B., Makowski D., Parent E., Rau A. and myself.

The lecture about Modeling in Life Science, which was mainly given by L.
Roques and in which I was involved to illustrate how to estimate parameters
of PDE-based models, led L. Roques to write a textbook. In this textbook,
I participated in writing one chapter, which reproduces what I taught to
students and deals with topics presented in Chapter 4 of the present document.
The reference of this chapter is:

Soubeyrand S. and Roques L. (2013). Problèmes inverses et estimations
de paramètres. PDF file. In: Roques L. (Author). Modèles de Réaction-
Diffusion pour l’Ecologie Spatiale. Editions QUAE, Versailles.

I have also participated to the writing of a chapter in an exercise book for
plant epidemiologists:

Lannou C. and Soubeyrand S. (2015). Measure of life-cycle traits of a
biotrophic pathogen (pp.149-152). In Stevenson K.L. and Jeger M.J. Ex-
ercices in Plant Disease Epidemiology, 2nd edition. The American Phy-
topathological Society, St. Paul, Minnesota.
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6.4 Network and projects

Since 2011, I am the coordinator of a network of researchers called ModStat-
SAP (Modeling and Statistics in Animal and Plant Health), whose website is
http://informatique-mia.inra.fr/reseau-modstatsap/. This network is
funded by 3 divisions of INRA, and gather about 100 participants in French
research institutes and universities. The main activities of the network is the
organization of annual meetings and workshops.

The following table provides the list of the main projects I have been
involved in.

Projects
Period Description

2013–2016 PEERLESS – funded by the French research agency ANR
Predictive ecological engineering for landscape ecosystem services and
sustainability

2010–2015 PLANTFOODSEC Project – funded by the European Commission (FP7)
Plant and Food Biosecurity

2010–2012 Group dispersal project – funded by the SPE division of INRA
Building a theoretical framework for group dispersal in plant epidemiology
I was the coordinator of this project

2009–2013 EMILE project – funded by the French research agency ANR
Inference methods and software for evolutionary studies
I was the coordinator of a work-package in this project
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6.5 Perspectives of research

Most of the works presented in this manuscript sketch the functioning of sys-
tems under study and provide elements to improve how these systems are un-
derstood. This approach will remain the core of my future research. However,
I will also orientate my research towards statistics for predictive epidemiol-
ogy. Thus, in the analysis of a data set, the question will not only be What
happened? but also What will happen? The following list of points provides
examples of new topics in my research, which will allow me to investigate both
questions.

6.5.1 Dispersal graphs substituting dispersal kernels

The dispersal kernel is an important component of my studies in particular
(as illustrated in Chapter 2) and of dispersal studies in general. So far, I have
mostly used and built relatively simple parametric forms, and in models with
multiple sources across space and time, the dispersal was generally assumed
to be stationary (i.e. the dispersal kernel is constant across space and time).

Numerous approaches have been investigated to increase the realism of
windborne particle dispersal by taking into account airflows, turbulences and
their spatio-temporal inhomogeneities (Nathan et al., 2011). In this vein, the
explicit simulation of particle trajectories based on computationally intensive
fluid dynamics tools (e.g. Navier-Stokes equation) is an attractive approach
which is, however, not directly adaptable to inference issues.

Another approach (beyond dispersal kernels) to represent propagation pro-
cesses is based on network modeling, which has been of particular interest in
human and animal epidemiology (Colizza et al., 2006; Beaunée et al., 2015).
Network modeling is a flexible way of representing space and contact that
generally focuses on prevailing spatial elements (nodes of the network) and
links (edges of the network). Networks have been used in numerous applica-
tions, including the study and the management of human, animal and plant
diseases (see the review by Moslonka-Lefebvre et al., 2011). Although the use
of networks has been fruitful in analyzing the spread of plant diseases and
assessing the risk of disease emergence (e.g. Brooks et al., 2008; Harwood
et al., 2009; Jeger et al., 2007), they have been relatively rarely used in plant
epidemiology, while they could efficiently challenge other types of spatially
explicit epidemic models (advantages of network modeling are, for instance,
the possibility to derive theoretical properties, their scale-free formalization,
the heterogeneity of link weights, and their adaptability to temporal changes
in link weights).

One of my research perspectives is the construction of dispersal graphs
based on both (i) computationally intensive fluid dynamics tools and (ii) net-
work modeling. These dispersal graphs should allow the representation of non-
stationary and anisotropic dispersal processes at mesoscales (from the large
region to the continent). In a project submitted to the French national research
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agency, we plan to construct dispersal graphs by using the HYSPLIT model2,
which provides trajectories of air masses and associated meteorological data.
This software will be used to assess the connectivity (i.e. the weights of the
network edges) between different areas (i.e. the nodes of the network). Then,
the weighted network will be exploited for characterizing dispersal probabil-
ities and, subsequently, specifying disease propagation models. Such models,
based on meteorological processes that are forecastable, are particularly rele-
vant for developing predictive epidemiology.

6.5.2 Genetic-space-time models that handle high-throughput
sequencing

Concerning the genetic-space-time approach for inferring transmission trees
(see Chapter 3), numerous perspectives can be developed in line with recently
published methodological advances (e.g. Lau et al., 2015; Hall et al., 2015).
In the medium term, I will attempt to investigate some methodological issues
within this set of perspectives. One of these issues is the use of high-throughput
sequencing (HTS) data of viral genomes sampled from infected hosts to infer
transmission links of infectious diseases.

HTS data enable the characterization of viral populations at the intra-host
level and, today, can be collected during epidemics, such as during the 2014
Ebola outbreak in West Africa (Gire et al., 2014). By revealing the polymor-
phic nature of intra-host populations of pathogens, HTS data are expected to
give more insights on transmission links than more basic sequencing data, e.g.
consensus and majority sequences (Stack et al., 2012; Wright et al., 2011).
Therefore, taking into account HTS data in the genetic-space-time models
for inferring transmission trees should enable more robust and accurate infer-
ences.

In the existing genetic-space-time SEIR model, genetic information is ac-
counted for in the reconstruction of transmission links by calculating the prob-
abilities that sequences collected from potential source hosts could be directly
related to those from infected hosts. When only the consensus sequence is
utilized, the probability of being directly related reduces to the probabilities
of genetic evolution between sequences. To utilize HTS data, the probability
of being directly related must be decomposed into: (i) the probability of ob-
served genetic changes between sequences, (ii) the probability of sub-sampling
when infections occur (infection bottlenecks), and (iii) the probability of sub-
sampling when sequences are sampled (sampling bottlenecks)3.

I proposed to investigate this topic in a project submitted to the French
national research agency. The project brings together scientists with skills in

2 HYSPLIT model (Hybrid Single Particle Lagrangian Integrated Trajectory
Model): http://ready.arl.noaa.gov/HYSPLIT.php.

3 One can also add the probability of sequencing errors, which might result in
artifactual minority variants.
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statistics, modeling, software development, epidemiology, virology and evolu-
tionary biology. The methodology developed during the project will be applied
to data sets collected from epidemics caused by the Ebola virus, the swine and
equine influenza viruses, the endive necrotic mosaic virus and the watermelon
mosaic virus.

6.5.3 Hamiltonian Monte-Carlo for dispersal models

In my work, I have extensively used MCMC with Metropolis-Hastings sam-
plers to infer model parameters and latent processes of hierarchical dispersal
models. However, for models with complex dependence structures, such as
those presented in Sections 2.4 and 2.5, the large computation times required
for obtaining long enough chains limit the possibility of testing numerous
model specifications.

An alternative sampler, which generally allows the reduction of computa-
tion times is the Hamiltonian sampler that was first introduced in the statisti-
cal physics literature (Duane et al., 1987) and applied afterwards to statistical
inference issues; see Neal (2011), Girolami and Calderhead (2011) and refer-
ences therein. The Hamiltonian sampler can be viewed as a specific Metroplis-
Hastings sampler, in which the proposal is based on two key components: (i)
some auxiliary random variables and (ii) an Hamiltonian dynamics applied to
the parameters/variables to be updated and to the auxiliary variables. The
auxiliary random variables allow the updating process to be stochastic. The
(deterministic) Hamiltonian dynamics allows large jumps that are accepted
with high probability.

Recently, Girolami and Calderhead (2011) and Zhang and Sutton (2014)
proposed versions of Hamiltonian Monte-Carlo (HMC; i.e. MCMC with
Hamiltonian sampler) which can efficiently tackle estimation for spatial hier-
archical models such as log-Gaussian Cox point processes (Illian et al., 2008,
chap. 6) and, by extension, spatial generalized linear mixed models (spatial
GLMM; Diggle et al., 1998). The trick is to tune the algorithm with auxiliary
variables, whose distributional characteristics depend on the current values of
model parameters and latent variables.

One of my research perspectives is to investigate new versions of HMC
adapted to hierarchical dispersal models, such as the model presented in Sec-
tion 2.4 (which can be viewed as an extension of a spatial GLMM) and other
dispersal models not based on latent Gaussian processes (which cannot be
tackled with integrated nested Laplace approximations (INLA); Rue et al.,
2009). In this aim, E. Walker (postdoctoral fellow) and I initiated a working
group on HMC and produced an introductory technical report (Walker and
Soubeyrand, 2016).

6.5.4 Statistical predictive epidemiology

Since 2014, I have been involved in a working group that discusses plant
health crises in general, and the way INRA can contribute to crisis response
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in particular. The management of plant health crises is handled by State
administrations and services, which may request the support of research in-
stitutes such as INRA. One of the potential INRA contributions, which is of
particular interest for me, concerns advanced analysis of surveillance data and
modeling of epidemics.

For instance, after the detection of the bacterium Xylella fastidiosa in
Corsica in the summer of 2015, the Plant Health and Environment division of
INRA and the State administration in charge of this crisis have established a
contract including a data analysis and modeling work package. In this work
package, we will (i) analyze surveillance and environmental data to figure out
the potential future extent of the disease caused by Xylella fastidiosa, (ii)
build risk maps based on propagation models, and (iii) propose risk-based
sampling for improving surveillance.

Beyond the Xylella fastidiosa crisis, my aim is to develop research on sta-
tistical predictive epidemiology in the context of plant health crises caused
by the (re-)emergence of pathogens and pests. A key feature of this context
is that crises are often caused by pathogens and pests that are not studied in
depth in research institutes. Thus, we generally do not have at our disposal an
adequate propagation model (i.e. a model adapted to the pathogen/pest and
the environment of interest) developed before the occurrence of the crisis. To
circumvent this difficulty, a generic approach must be developed. The generic
approach that I have in mind will be based on (i) a library of propagation
models including spatio-temporal SEIR stochastic models and PDE-based in-
vasion models, (ii) the mechanistic-statistical approach for linking propaga-
tion models and surveillance/environmental data, (iii) the model-averaging
approach for combining predictions obtained with several models, (iv) the use
of genomic data, which can lead to more accurate inferences on dispersal ca-
pacities, and (v) risk-based sampling approaches for designing surveillance as
a function of propagation predictions.

Thus, in the next few years, I will promote the construction of an integrated
methodological framework, which should contribute to developing predictive
epidemiology and improving emergency response in the context of plant health
crises. This construction should be facilitated in the next few years with the
recruitment of one master student in 2016, one engineer in statistics in 2016–
2017, and probably one PhD student in 2016–2019.



Appendix

ABC algorithm including a pilot ABC run

A4.Carry out the next three steps,
1. Select the set J with size |J | < J formed by the indices j ∈ {1, . . . , J}

corresponding to the |J | smallest distances between θ′j and Θpilot, this
distance being defined by:

min

{
K∑
k=1

(θ′jk − θpilot,k)2

V (θ′jk)
: θpilot ∈ Θpilot

}
,

where θpilot,k, k = 1, . . . ,K, are the K components of θpilot.
2. Select the weight function and the acceptance rate that minimize the

following partial MSE (PMSE) criterion:

PMSEJ (w, τ) =
1

|J |
∑
j∈J

K∑
k=1

(θ̂′jk(w, τ)− θ′jk)2

V (θ′jk)
. (.1)

Terms in Equation (.1) are the same than those in Equation (5.8)
except that the sum is restricted to J . The PMSE is minimized over
the space function W and the interval (0, 1]:

(wpilotopt , τ
pilot
opt ) = argminw,τ∈W×(0,1]PMSEJ (w, τ). (.2)

3. For i in {1, . . . , I}, accept θi if d(Si, S;wpilotopt ) ≤ ε(τpilotopt ).

The set of accepted parameters forms a sample from the posterior dis-
tribution (5.5) with ε(τ) = ε(τpilotopt ) and with B(S, ε(τ)) equal to the ball

with center S and radius ε(τpilotopt ) in the space S with distance d(·, ·;wpilotopt ).
Here also weighting the distance modifies the posterior under which the ac-
cepted parameters are drawn. However, when ε(τpilotopt ) tends to zero, the new
posterior distribution (like the one given in Equation (5.5)) may be a good
approximation of p(θ | S) given in Equation (5.6).
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J., Faouzi, A., Echevarŕıa, J. E., Vazquez Moron, S., Rambaut, A., et al.
(2010). Phylodynamics and human-mediated dispersal of a zoonotic virus.
PLoS Pathog, 6:e1001166.

Tamaki, K. (2008). The Bernstein-von Mises theorem for stationary processes.
J. Japan Statist. Soc, 38:311–323.

Theophrastus (1916). Enquiry into plants – English translation by Sir Arthur
Hort. Harvard University Press, London.

Travis, J. M. J. and Dytham, C. (2002). Dispersal evolution during invasions.
Evolutionary Ecology Research, 4:1119–1129.

Tuffley, C. and Steel, M. (1997). Links between maximum likelihood and
maximum parsimony under a simple model of site substitution. Bulletin of
Mathematical Biology, 59:581–607.

Tufto, J., Engen, S., and Hindar, K. (1997). Stochastic dispersal processes in
plant populations. Theoretical Population Biology, 52:16–26.
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Wälder, K., Näther, W., and Wagner, S. (2009). Improving inverse model fit-
ting in trees–anisotropy, multiplicative effects, and bayes estimation. Eco-
logical Modelling, 220:1044–1053.

Walker, A. M. (1969). On the asymptotic behaviour of posterior distributions.
J. Roy. Stat. Soc. B, 31:80–88.

Walker, E. and Soubeyrand, S. (2016). Hamiltonian Monte Carlo in practice.
Technical report, INRA, Biostatistics and Spatial Processes.

Wegmann, D., Leuenberger, C., and Excoffier, L. (2009). Efficient Approxi-
mate Bayesian Computation coupled with Markov chain Monte Carlo with-
out likelihood. Genetics, 182:1207–1218.

Wei, G. C. G. and Tanner, M. A. (1990). Monte Carlo implementation of the
EM algorithm and the poor man’s data augmentation algorithms. J. of the
American Statistical Association, 85:699–704.

Weinan, E. and Engquist, B. (2003). Multiscale modeling and computation.
Notices Am. Math. Soc., 50:10621070.

Weinan, E., Engquist, B., and Huang, Z. (2003). Heterogeneous multiscale
method: a general methodology for multiscale modeling. Phys. Rev. B,
67:09210–1.

Wikle, C. K. (2003a). Hierarchical models in environmental science. Interna-
tional Statistical Review, 71:181–199.

Wikle, C. K. (2003b). Hierarchical Bayesian models for predicting the spread
of ecological processes. Ecology, 84:1382–1394.

Wilson, J. D. (2000). Trajectory models for heavy particles in atmospheric
turbulence: comparison with observations. Journal of Applied Meteorology,
39:1894–1912.
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Summarizing text samples

“This document, which was written to obtain the habilitation à diriger des
recherches (i.e. the accreditation to supervise research), illustrates what kind
of researcher I am: a researcher who carries out his own research and who
contributes to the research of colleagues; a researcher who tends to explore
various fields, techniques and issues, but who is consistently interested in
recurrent topics.”

“Since the beginning of my PhD studies, I have participated in the develop-
ment of [quantitative analysis for epidemiology] and tried to bring original
ideas by carrying out research at the interplay between statistics, modeling,
probability, plant epidemiology and, occasionally, animal epidemiology. Car-
rying out such multidisciplinary research led me to be a researcher in applied
statistics.”

“In my research practice, I am not focused on a given methodology, but I ex-
ploit diverse statistical and modeling tools and explore some of them in depth.
The main tools I have used are spatial and spatio-temporal point processes,
continuous-time Markov and semi-Markov processes, state-space models and
estimation algorithms.”

“Most of the works presented in this manuscript sketch the functioning of
systems under study and provide elements to improve how these systems
are understood. This approach will remain the core of my future research.
However, I will also orientate my research towards statistics for predictive
epidemiology. Thus, in the analysis of a data set, the question will not only
be What happened? but also What will happen?”


