
Introduction Exploratory and R Random Variables Estimation Tests Regression ANOVA

Environmental Data Analysis
Part I: The Linear Model

Denis Allard1

Biostatistique et Processus Spatiaux (BioSP), INRA, Avignon
http://informatique-mia.inra.fr/biosp/content/homepage-denis-allard

Doctoral program in Environmental Sciences
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Introduction Exploratory and R Random Variables Estimation Tests Regression ANOVA

History

Some scientific fields cannot go without statistics:

R.A Fisher 1890–1962 C.E. Spearman, 1863–1945

I Agronomy (field trials, genetics, seed selection, ...)
I Psychology (tests, ... )
I Medical trials
I Economics, political sciences (polls, surveys, ...)
I Environment and Geosciences

Historically, statistics was founded by non mathematicians
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Statistical Triangle

What is statistics ?

I Statistics is about describing and analyzing data (samples)
I Using mathematic methods derived from probability theory
I In view of testing scientific hypothesis

Statistical Triangle

Data

Mathematics Scientific hypothesis
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Objectives

I Introduction to statistical methods for dealing with data correlated in time and in
space

I Focus on ideas and intuition
I Graphical inspection of data
I Estimating characteristics of a population, based on samples
I Quantifying causes of variations
I Testing scientific hypothesis
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Objectives

I Four main chapters:
1. Exploratory statistical analysis and inference
2. Regression analysis
3. Time series analysis
4. Spatial analysis

I Not too formulas . . .
I . . . a full understanding of statistical methods requires technical details (formulas !)
I Practicals with R
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Some definitions

Population

”In statistics, a population is a set of similar items or events which is of interest for
some question or experiment.

A statistical population can be a group of actually existing objects (e.g. the set of all
stars within the Milky Way galaxy) or a hypothetical and potentially infinite group of
objects conceived as a generalization from experience (e.g. the set of all possible
hands in a game of poker).

A common aim of statistical analysis is to produce information about some chosen
population.”
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Some definitions

Sample
A sample, X1,X2, . . . ,Xn is a subset of a population

Random Sample
A sample is random if each individual in the sample is drawn randomly

I randomly
I independently to each other

Sampling bias
A random sample is biased when samples are collected in such a way that some
members of the intended population are less likely to be included than others.

Examples:
I Internet surveys
I Survivorship bias
I Sampling in specific area or in ”interesting areas”
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Some definitions

Data
Data: set of statistical variables measured on the statistical units of a population (or of
a sample)

I numerical variables
discrete integer values
continuous real values

I categorical variables assume categories not numbers
nominal categories (or levels) without a natural order
ordinal categories (or levels) with a natural order
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Some famous quotes and sayings

”The combination of some data and an aching desire for an answer does not ensure
that a reasonable answer can be extracted from a given body of data.”

(John Tukey)

”An approximate answer to the right problem is worth a good deal more than an exact
answer to an approximate problem.”

(John Tukey)

”All models are wrong, but some are useful.”

”Statisticians, like artists, have the bad habit of falling in love with their models.”

(Georges Box)

”To call in the statistician after the experiment is done may be no more than asking him
to perform a post-mortem examination: he may be able to say what the experiment

died of.”

(Ronald Fisher)
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Some famous quotes and sayings

And a last one, more than 100 years old...

”The great body of physical science, a great deal of the essential fact of financial
science,and endless social and political problems are only accessible and only
thinkable to those who have had a sound training in mathematical analysis, and the
time may not be very remote when it will be understood that for complete initiation as
an efficient citizen of one of the new great complex world-wide States that are now
developing, it is as necessary to be able to compute, to think in averages and maxima
and minima, as it is now to be able to read and write.”

(H.G. Wells, 1911 — Mankind in the making.)
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Unit 1
Exploratory analysis and R environment
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Data frames

I Data are organized in tables (matrix-like format) where rows correspond to
statistical units and columns to measured variables

I In R data matrices are called data frames
I Data frame airquality available in R: daily air quality measurements in NYC

during period May-Sept 1973
> data(airquality)
> class(airquality)
[1] "data.frame"
> help(airquality)
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Data frames

I airquality contains six variables (i.e. 6 columns) measured on 153 statistical
units (i.e. 153 lines)
> dim(airquality)
[1] 153 6

I Measured variables are
> names(airquality)
[1] "Ozone" "Solar.R" "Wind" "Temp"
"Month" "Day"

I First rows of airquality
> head(airquality)
Ozone Solar.R Wind Temp Month Day
1 41 190 7.4 67 5 1
2 36 118 8.0 72 5 2
3 12 149 12.6 74 5 3
4 18 313 11.5 62 5 4
5 NA NA 14.3 56 5 5
6 28 NA 14.9 66 5 6

NA means not available and it is used to denote a missing observation
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I Single variables can be accessed via operator $
> airquality$Ozone
[1] 41 36 12 18 NA 28 23 19 (...)
> airquality$Wind
[1] 7.4 8.0 12.6 11.5 14.3 14.9 (...)

I All the variables in this data frame are numeric
> is.numeric(airquality$Ozone)
[1] TRUE
> is.numeric(airquality$Wind)
[1] TRUE
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I Another data frame: CO2
> data(CO2)
> help(CO2)

I CO2 regards an experiment on the cold tolerance of the grass species
Echinochloa crusgalli
> names(CO2)
[1] "Plant" "Type" "Treatment" "conc"
"uptake
> head(CO2)
Plant Type Treatment conc uptake
1 Qn1 Quebec nonchilled 95 16.0
2 Qn1 Quebec nonchilled 175 30.4
3 Qn1 Quebec nonchilled 250 34.8
4 Qn1 Quebec nonchilled 350 37.2
5 Qn1 Quebec nonchilled 500 35.3
6 Qn1 Quebec nonchilled 675 39.2

I CO2 contains both numeric and categorical variables
I Categorical variables are also termed factors
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I The first column of CO2 is variable Plant

> CO2$Plant
[1] Qn1 Qn1 Qn1 Qn1 Qn1 Qn1 Qn1 Qn2 Qn2 ...
> is.numeric(CO2$Plant)
[1] FALSE
> is.factor(CO2$Plant)
[1] TRUE
> is.ordered(CO2$Plant)
[1] TRUE
> levels(CO2$Plant)
[1] "Qn1" "Qn2" "Qn3" "Qc1" "Qc3" "Qc2" "Mn3" "Mn2" "Mn1"
[10] "Mc2" "Mc3" "Mc1"
> nlevels(CO2$Plant)
[1] 12

I Variable Plant is an ordered factor with levels Qn1 < Qn2 < Qn3 < . . .< Mc1
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I Type is an unordered factor (aka nominal factor)
> CO2$Type[c(1, 12, 45)]
[1] Quebec Quebec Mississippi
Levels: Quebec Mississippi
> is.numeric(CO2$Type)
[1] FALSE
> is.factor(CO2$Type)
[1] TRUE
> is.ordered(CO2$Type)
[1] FALSE

I CO2 has two levels
> levels(CO2$Type)
[1] "Quebec" "Mississippi"

I Factors with two levels are also termed binary variables
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I The data frame CO2 includes another factor and also two numeric variables
> is.numeric(CO2$Treatment)
[1] FALSE
> is.factor(CO2$Treatment)
[1] TRUE
> is.ordered(CO2$Treatment)
[1] FALSE
> levels(CO2$Treatment)
[1] "nonchilled" "chilled"
> is.numeric(CO2$conc)
[1] TRUE
> is.factor(CO2$conc)
[1] FALSE
> is.numeric(CO2$uptake)
[1] TRUE
> is.factor(CO2$uptake)
[1] FALSE
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Boxplots
I First step of any statistical analysis is data visualization
I The box-and-whiskers plot is a graphical display of a numeric data vector

max (y1, …, yn)

min (y1, …, yn)

3° quartile

1° quartile
median

I In presence of outliers, the whiskers are shortened to a length of 1.5 times the box
length

I Any point beyond the whiskers is a potential outlier
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> boxplot(airquality$Wind, main="wind")

5
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wind
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Plots
Pairing histograms and box plots can also be useful
> par(mfrow=c(1,2))
> boxplot(airquality$Wind, main="wind")
> hist(airquality$Wind, main="wind")
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> hist(airquality$Ozone, main="ozone")
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Smoothing the histogram
I With limited data, histograms may look rather irregular
I Irregularities may reflect:

sample uncertainty
measurement errors

I Smoothing the histogram is helpful to detect regularities obscured by sample
uncertainty or measurement errors
> par(mfrow=c(1,2))
> hist(airquality$Ozone, main="ozone", freq=FALSE)
> lines(density(airquality$Ozone, na.rm=TRUE))
> hist(airquality$Wind, main="wind", freq=FALSE)
> lines(density(airquality$Wind))
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I The smoothing curve is called density
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I The degree of smoothing is regulated by a parameter called bandwith
I The larger the bandwith, the smoother the density

> hist(airquality$Ozone, main="ozone", freq=FALSE)
> lines(density(airquality$Ozone, na.rm=TRUE, bw=13))
> hist(airquality$Wind, main="wind", freq=FALSE)
> lines(density(airquality$Wind, bw=2))

ozone

airquality$Ozone

D
en
si
ty

0 50 100 150

0.
00
0

0.
00
5

0.
01
0

0.
01
5

wind

airquality$Wind

D
en
si
ty

0 5 10 15 20

0.
00

0.
04

0.
08

0.
12

24 / 146



Introduction Exploratory and R Random Variables Estimation Tests Regression ANOVA

Scatterplots

I Scatterplots are used to display two numeric variables
> plot(Ozone˜Wind, data=airquality, pch=20)

I Notation A ∼ B is a formula. It means that A is explained as a function of B
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Function pairs(x) can be used to draw the scatterplots between any pair of variables
contained in the dataframe x

> pairs(airquality)

Ozone
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Correlation

I The correlation between two variables is a measure of their linear relationship
I Let (xi , yi ), i = 1, . . . , n, be n pairs of numeric variables jointly observed
I The correlation between x and y is defined as

rxy =
1
n

n∑
i=1

(
xi − x̄

sx

)
︸ ︷︷ ︸
standardized

(
yi − ȳ

sy

)
︸ ︷︷ ︸
standardized

where:
x̄ and ȳ are the means of x and y
sx and sy are the standard deviations of x and y
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I The correlation can be shown to be equal to

rxy =
sxy

sx sy

where sxy is the covariance between x and y

sxy =
1
n

n∑
i=1

(xi − x̄n) (yi − ȳn)

I An important result known as the Cauchy-Swartz inequality states that

−1 ≤ rxy ≤ 1

I Comments:
if rxy = 0, then x and y are said to be uncorrelated which means that there is no linear
relationship between them
rxy = 0 does not mean there is no relationship but only no linear relationship
rxy = 1 means perfect positive linear relationship between x and y
rxy = −1 means perfect negative linear relationship between x and y
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The various possibilities are illustrated below2

2This picture comes from the Wikipedia page
http://en.wikipedia.org/wiki/Correlation_and_dependence

29 / 146

http://en.wikipedia.org/wiki/Correlation_and_dependence


Introduction Exploratory and R Random Variables Estimation Tests Regression ANOVA

I Functions cor() and cov() are used to compute rxy and sxy

> cor(airquality$Ozone, airquality$Wind,
+ use="complete.obs")
[1] -0.6015465

where option use="complete.obs" means that pairs with one or both missing
observations are removed

I R computes correlations and covariances dividing by n − 1 instead of n (in way to
correct for the so-called “small-sample bias”)

I If function cor() is applied to an entire data frame, then the correlation matrix
containing all pairwise correlation is returned
> round( cor(airquality, use="complete.obs"), 2)

Ozone Solar.R Wind Temp Month Day
Ozone 1.00 0.35 -0.61 0.70 0.14 -0.01
Solar.R 0.35 1.00 -0.13 0.29 -0.07 -0.06
Wind -0.61 -0.13 1.00 -0.50 -0.19 0.05
Temp 0.70 0.29 -0.50 1.00 0.40 -0.10
Month 0.14 -0.07 -0.19 0.40 1.00 -0.01
Day -0.01 -0.06 0.05 -0.10 -0.01 1.00
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I Function plotcorr() in the optional package ellipse (Murdoch and Chow, 2007)
provides a nice representation of a correlation matrix
> install.packages("ellipse")
> library(ellipse)
> plotcorr( cor(airquality, use="complete.obs") )
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I See example(plotcorr) for coloured examples
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Random samples – uncertainty

I In many practical contexts it is not possible to observe an entire population
I A random sample is chosen from the population by a selection procedure with an

unpredictable component
I If samples are random, then inferential statistical methods based on the theory of

probability can be used to infer about the unobserved population the samples
come from

I Conclusions based on non-random sampling are usually unreliable – or need
more sophisticated methods that account for the specific selection scheme
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Sampling in R

I Function sample() takes a random sample from a given population
> data <- 1:100
> sample(data, size=5)
[1] 21 24 45 33 39
> sample(data, size=5)
[1] 44 95 22 36 85
> sample(data, size=5)
[1] 53 58 26 85 31

I Computer are deterministic machines and thus they cannot produce random
samples

I In fact, sample() draws a pseudorandom sequence that looks like a random
sequence, although it is not

I “Looks like a random sequence” means that the sequence is tested to check
whether it is possible to predict its future values
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I Pseudorandom sequences start from a certain seed
I If we choose the same seed, then we have the same sequence.
I In R the seed of the pseudo random sequence is set by command set.seed(x)

where x is a number
> set.seed(543)
> sample(data, size=5)
[1] 92 81 57 11 65
> sample(data, size=7)
[1] 89 43 21 17 29 74 42
>
>
> set.seed(543)
> sample(data, size=7)
[1] 92 81 57 11 65 84 40
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The Swiss Jura data set

1 2 3 4 5

1
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3
4

5

Sampling design

X

Y

1 2 3 4 5

1
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3
4

5

Sampling design

X

Y
I 359 data, sampled in Swiss Jura, approx. 25 km2 study area
I Sampling design: regular grid + random local densification
I Content of 7 heavy metals: Cd, Co, Cr, Cu, Ni, Pb, Zn
I 5 rock types: Argovian,Kimmeridgian, Sequenian, Portlandian, Quaternary
I 4 Land Use: forests, pastures, grasslands, tillage
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The Swiss Jura data set

> jura = read.table("jura.txt",header=TRUE)
> jura[1,]
x y lu rt Cd Co Cr Cu Ni Pb Zn
1 2.386 3.077 3 3 1.74 9.32 38.32 25.72 21.32 77.36 92.56
> par(mfrow=c(1,2))
> plot(jura$x,jura$y,main="Sampling design",xlab="X",ylab="Y",pch=3)
> plot(jura$x,jura$y,main="Sampling design",xlab="X",ylab="Y",
> pch=19,cex=jura$Ni/20,col="green")
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Sampling Variability of the mean

I Consider the average level of Ni
> true <- mean(jura$Ni, na.rm=TRUE)
> true
[1] 20.01822

I Suppose that, for some reason, we cannot observe all the data but only a random
sample of size 30

I We want to use this sample to estimate the true average level
> mean(sample(jura$Ni, size=30), na.rm=TRUE)
[1] 20.08267
> mean(sample(jura$Ni, size=30), na.rm=TRUE)
[1] 18.648
> mean(sample(jura$Ni, size=30), na.rm=TRUE)
[1] 19.72133
> mean(sample(jura$Ni, size=30), na.rm=TRUE)
[1] 19.968
> mean(sample(jura$Ni, size=30), na.rm=TRUE)
[1] 20.46

I Estimates based on random samples fluctuate around the true value
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I To get further insight into random sampling, we can repeat the sampling process a
large number of times, say 100
> all.samp <- replicate(100, sample(jura$Ni, size=30))

I Object all.sim is a matrix with 30 rows and 1, 000 columns
> dim(all.sim)
[1] 30 100

I Now, we compute the 100 estimates corresponding to the 100 random samples by
function apply() which allows to apply a function to matrix rows or columns

I The syntax of apply is

apply(x, margin, function)

where x is a matrix, margin is 1 if function has to be applied to the rows and 2
if it has to be applied to the columns

I In our case, we have
> xbar <- apply(all.samp, 2, mean, na.rm=TRUE)
> xbar[1:20]
[1] 19.45333 19.47933 19.57600 19.80800 20.30267 21.02800 23.06133
[8] 20.72600 20.04800 20.35600 17.35067 18.05933 20.52933 21.20400
[16] 19.17733 18.92267 17.72533 21.28400 20.86800 19.69600
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All samples
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The distribution of the estimates is centered around the true value and looks symmetric
> summary(est)
Min. 1st Qu. Median Mean 3rd Qu. Max.
15.69 19.12 20.03 20.04 20.98 24.22
> true
[1] 20.01822
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Histogram of the 100 estimates with a vertical red line corresponding to the true value
of the Ni level

> par(mfrow=c(1,2))
> hist(jura$Ni,xlab="Ni (mg/kg)",main="All samples",
> xlim=c(0,max(Ni)),probability=TRUE)
> hist(xbar,xlab="Ni (mg/kg)",main="Averages with n=30",
> xlim=c(10,35),probability=TRUE)
> abline(v=mean(Ni),col=3,lwd=3)
> abline(v=mean(xbar),col=2,lwd=3)
> abline(v=mean(Ni)-1.96*sqrt(var(Ni)/ndata),col=3,lwd=1)
> abline(v=mean(Ni)+1.96*sqrt(var(Ni)/ndata),col=3,lwd=1)
> z = seq(10,30,by=0.1)
> f = dnorm(z,mean=mean(Ni),sd=sqrt(var(Ni)/ndata))
> lines(z,f,type="l",col="blue",lwd=2)
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I If the sample size is larger, then the sample distribution of the estimates is more
concentrated around the true value
> all.samp2 <- replicate(100, sample(jura$Ni, size=60))
> xbar2 <- apply(all.samp2, 2, mean, na.rm=TRUE)

I In fact, the 90% of the estimates with samples size 30 lies in
> quantile(xbar, probs=c(0.05, 0.50, 0.95))

5% 50% 95%
17.69567 19.79067 22.10180

I The same interval with samples of size 60 is shorter
> quantile(xbar2, probs=c(0.05, 0.50, 0.95))

5% 50% 95%
18.62182 20.06967 21.27593

Can we quantify this estimation uncertainty ?

We will need probability theory and Gaussian random variables
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Unit 3
Estimation and Tests
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Inference: definitions and basic principles

I A parameter is a quantity describing a theoretical probability distribution (for the
population)

I A statistic is a quantity computed from the sample, in order to estimate the
parameter

I An estimate of the parameter is derived from these statistics.

I The sampling error is the chance difference between an estimate and the
population parameter being estimated

I The bias is a systematic discrepancy between estimates and the true population
characteristic

I The standard error of an estimate is the standard deviation of the estimate’ s
sampling distribution

I The sampling distribution of a statistic is the probability distribution of values for an
estimate that we might obtain when we sample a population.
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Random Variables

I Before to proceed with the description of the normal distribution, we need to
introduce random variables

I Informally, a random variable, usually denoted X , can be defined as the future
outcome of a measurement, before the measurement is taken

I A random variable does not have a specific value, but rather a collection of
potential values with a distribution over these values (Yakir, 2011)3

I Random variables can be either categorical or numerical, the latter further
subdivided into discrete and continuous

I The normal variable (or Gaussian variable) is the most important example of
continuous random variable

3Yakir, B. (2011). Introduction to Statistical Thinking (With R, Without Calculus), available at url
http://pluto.huji.ac.il/˜msby/StatThink/index.html
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Gaussian Random Variables

I We write X ∼ N (µ, σ2) to indicate that X is normal (or Gaussian) with mean µ
and variance σ2

I In order to specify a continuous random variable, we need to:
describe the range of possible outcomes (the support)
describe the probability of observing outcomes in a certain interval

I In the case of the normal variable we have:
the domain is the real line (from −∞ to +∞)
the probability of observing outcomes in a certain interval is described by the area under
the normal density (Gaussian bell curve)
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I Normal density function

f (x ;µ, σ2) =
1

√
2πσ2

exp

{
−

(x − µ)2

2σ2

}
I Characteristics:

symmetry, median and mode coincide with mean µ
variance σ2 describes the spread around µ

Source: Wikipedia http://en.wikipedia.org/wiki/Normal_distribution

I Normal variables are identified by parameters µ and σ2
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I Linear combinations of normal variables are still normal:

if X ∼ N (µ, σ2), then Y = a + bX ∼ N (a + bµ, b2σ2)

I An important example of linear combination is standardization

Z =
X − µ
σ

= −
µ

σ
+

1
σ

X︸ ︷︷ ︸
a+bX

∼ N (0, 1)

I Z is called the standard normal variable

Source: Wikipedia http://en.wikipedia.org/wiki/Normal_distribution

I If the “true” data generator mechanism follows a normal law, then about 95% of
observations lies in (µ− 2σ, µ+ 2σ)
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I In R a normal random sample of size n is obtained by calling
rnorm(n, mean = 0, sd = 1)

I Warning! R functions for the normal distribution use σ (sd ) not σ2!
I Next lines simulate an increasing number of observations from X ∼ N (2, 1) and

compute the frequency of observations smaller than 1
> set.seed(123)
> mean( rnorm(100, 2, 1) < 1 )
[1] 0.14
> mean( rnorm(1000, 2, 1) < 1 )
[1] 0.167
> mean( rnorm(10000, 2, 1) < 1)
[1] 0.159

I Do these values make sense?
I Compare with P(X ≤ 1) = 0.1586553

> pnorm(1,2,1)
[1] 0.1586553
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The Normal Distribution
Increasing number of random samples of size 30

> for(i in c(10, 50, 100, 500, 1000, 5000)){
all.sim <- replicate(i, sample(jura$Ni, size=30))
xbar <- apply(all.sim, 2, mean, na.rm=TRUE)
hist(xbar, freq=FALSE, main=paste("number samples", i),xlim=c(16,24))
abline(v=mean(jura$Ni), col="red")
lines(density(xbar), col="blue")
}
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Estimating the mean

I Let X1, . . . ,Xn be an i.i.d. n-sample, arising from a population with mean µ and
variance σ2.

I The arithmetic average

X̄ =
1
n

(X1 + · · ·+ Xn) =
1
n

n∑
i=1

Xi

is the natural estimator of µ.
I It is a random variable with

E [X̄ ] = µ; Var(X̄) =
σ2

n

Central Limit Theorem
Provided σ2 <∞, as n→∞, we have

X̄ − µ
σ/
√

n
→ N (0, 1); X̄ → µ+

σ
√

n
N (0, 1)
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Estimating the mean

Summary
I The estimate of mean, X̄ is random, because the sampling is random
I It is unbiased: E [X̄ ] = µ

I Var[X̄ ] = σ2/n
I The esimate of the mean is within

[µ− 1.96σ/
√

n;µ+ 1.96σ/
√

n]

with probability 95%.
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Confidence Interval for the mean

1. X1, . . . ,Xn i.i.d samples with E [X ] = µ

2. Let us find an interval [µ̂inf , µ̂sup] containing the true value µ = E [X ] with
probability 1− α: we call it the level.

3. We set the error on both sides

P(µ < µ̂inf ) = P(µ ≥ µ̂sup) = α/2.

Confidence Interval: σ2 is known
Let us first assume that σ2 is known. Then, as n→∞.

[µ̂inf , µ̂sup] = [X̄ − u1−α/2
σ
√

n
, X̄ + u1−α/2

σ
√

n
],

where up is the value such that

P(N (0, 1) ≤ p) = up
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Confidence Interval for the mean

Confidence Interval: σ2 is known
Let us first assume that σ2 is known. Then,

[µ̂inf , µ̂sup] = [X̄ − u1−α/2
σ
√

n
, X̄ + u1−α/2

σ
√

n
]

Proof
Using CTL,

1− α = P

(
−u1−α/2 ≤

X̄ − µ
σ/
√

n
≤ u1−α/2

)

= P
(
−u1−α/2

σ
√

n
− X̄ ≤ −µ ≤ u1−α/2

σ
√

n
− X̄

)
= P

(
X̄ − u1−α/2

σ
√

n
≤ µ ≤ X̄ + u1−α/2

σ
√

n

)
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Confidence Interval for the mean

Confidence Interval: σ2 is known
Let us first assume that σ2 is known. Then,

[µ̂inf , µ̂sup] = [X̄ − u1−α/2
σ
√

n
, X̄ + u1−α/2

σ
√

n
]

The width of the CI interval
I Increases with 1− α:

α = 10% ⇔ u0.950 = 1.64

α = 5% ⇔ u0.975 = 1.96

α = 1% ⇔ u0.995 = 2.58

I Increases with the variance
I Decreases as 1/

√
n

I 1000 repetitions – samples of size 30. With α = 5%, one finds

#{µ < µ̂inf } = 24; #{µ > µ̂sup} = 19,

where 25 expected.
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Sampling Variability of the variance

I Consider the average level of Ni
> true.var<- var(jura$Ni, na.rm=TRUE)
> true.var
[1] 65.51511

I Suppose that, for some reason, we cannot observe all the data but only a random
sample of size 30

I We want to use this sample to estimate the true average level
> var(sample(jura$Ni, size=30), na.rm=TRUE)
[1] 118.0867
> var(sample(jura$Ni, size=30), na.rm=TRUE)
[1] 49.55809
> var(sample(jura$Ni, size=30), na.rm=TRUE)
[1] 59.8795
> var(sample(jura$Ni, size=30), na.rm=TRUE)
[1] 50.19293
> var(sample(jura$Ni, size=30), na.rm=TRUE)
[1] 50.51859
> var(sample(jura$Ni, size=30), na.rm=TRUE)
[1] 131.4138

I Estimates based on random samples fluctuate (a lot) around the true value
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I We compute the 100 estimates corresponding to the 100 random samples using
apply()

I We have
> S2 <- apply(all.samp, 2, var, na.rm=TRUE)
> S2[1:20]
[1] 80.06701 89.42725 55.37910 67.03496 48.35586 56.89323 39.10971
[8] 87.23956 79.60954 37.37551 49.88000 70.77083 85.95101 61.96498
[15] 53.14278 43.22899 44.45698 68.54886 49.69491 58.54554
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More probability facts

Estimation of the variance

σ̂2 = S2 =
1

n − 1

n∑
i=1

(Xi − X̄)2

is unbiased, i.e.
E [σ̂2] = σ2.

χ2 distribution

Let X1, . . . ,Xn be an i.i.d. sample from a N (µ, σ2) RV. Then,

(n − 1)S2/σ2 ∼ χ2
(n−1).

There are (n − 1) independent RV (degrees of freedom) when computing S2.
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The χ2 distributions
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Illustration

Variance with n=30
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Confidence Interval for the variance

Confidence Interval at level α
Let X1, . . . ,Xn be an i.i.d. sample from a N (µ, σ2) RV. Then,

[σ̂2
inf , σ̂

2
sup] = [S2(n − 1)/x (n−1)

α/2 ,S2(n − 1)/x (n−1)
1−α/2],

where x (n−1)
p is such that P(χ2

n−1 ≤ p) = x (n−1)
p .

Proof
Using convergence towards χ2,

1− α = P
(

x (n−1)
α/2 ≤ (n − 1)S2/σ2 ≤ x (n−1)

1−α/2

)
= P

(
1/x (n−1)

1−α/2 ≤ σ
2/(S2(n − 1)) ≤ 1/x (n−1)

α/2

)
= P

(
S2(n − 1)/x (n−1)

1−α/2 ≤ σ
2 ≤ S2(n − 1)/x (n−1)

α/2

)
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Even more probability facts

Student t distribution
Let X ∼ N (0, 1) and Y ∼ χ2

(n)
be independent. Then,

X
Y/
√

n
∼ tn

t distribution with n d.o.f.

Fisher F distribution
Let X ∼ χ2

(nX )
and Y ∼ χ2

(nY )
be independent. Then,

X/
√

nX

Y/
√

nY
∼ F nX

nY
.
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The Student t distributions
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The Fisher F distributions
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Confidence interval Revisited

Confidence Interval: σ2 is estimated
Let X1, . . . ,Xn be an i.i.d. sample from a N (µ, σ2) RV. Using the definition of the t
Student distribution:

[µ̂inf , µ̂sup] = [X̄ − t1−α/2
S
√

n
, X̄ + t1−α/2

S
√

n
]

where
P(t(n−1) ≤ t1−α/2) = 1− α/2.

If X1, . . . ,Xn is not Gaussian, requires n > 30.
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Confidence interval Revisited

Confidence Interval: σ2 is estimated
Using the definition of the t Student distribution:

[µ̂inf , µ̂sup] = [X̄ − t1−α/2
S
√

n
, X̄ + t1−α/2

S
√

n
]

Since t1−α/2 ≥ u1−α/2, the interval is wider as compared to the case with known σ2.
With n = 30:

α = 10% ⇔ t0.950 = 1.70 [u0.950 = 1.64]

α = 5% ⇔ t0.975 = 2.04 [u0.975 = 1.96]

α = 1% ⇔ t0.995 = 2.76 [u0.995 = 2.58]

Same 1000 samples of size 30. One finds

#(µ < µ̂inf ) = 29 [24]; #(µ > µ̂sup) = 24 [19].

Expected value: 25.
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Statistical tests

I According to former studies and/or expertise, one should have µ = 20.
I A sample of size 30 provides X̄ = 22.2 and S2 = 52.
I Is this a significant difference?

 Need for formal statistical tests

Definition
Statistical test = Mathematical decision tool to check an hypothesis.

I Neutral, or ”null” hypothesis, H0

I Alternative hypothesis, H1

H0 is not guilty unless proven otherwise.
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Statistical tests

Test

H0 vs. H1

We always test H0 against an alternative. Both have to be clearly defined.

Two types of errors
Decision

Do not reject H0 Reject H0
Keep H0 Prefer H1

H0 true Correct Type I Error
H1 true Type II Error Correct

I Level
α = P(Type I Error)

(to be computed conditional on H0 being true)
I Power

1− β = P(No Type II Error)

(to be computed conditional on H1 being true)
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Statistical test: the very, very general procedure

H0 is supposed to be true unless proven to be false.
⇒ computations are done conditional on H0.

1. Define clearly the hypotheses H0 and H1

2. Set the level α

3. Use the relevant statistics (this is where the mathematical theory comes in), say T

4. Find the critical value of T , denoted tc , as a function of n, α

5. Compute the value of T for the given sample, and compare to tc
6. Conclude whether H0 should be rejected or not
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Power of a test

I The level α is set by the user.

1− α = P(H0 | H0) = P(Not rejecting H0|H0 is true)

I Power
1− β = P(H1 | H1) = P(Rejecting H0|H1 is true)

Necessitates a complete specification H1.

Example: testing the mean

H0 : µ = µ0 vs. H1 : µ = µ1 > µ0

The power 1− β is a function of µ1.
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Testing the mean

The average of Ni should be µ = 20. In a sample of size 30, it is found that X̄ = 22.2
and S2 = 52.

Should H0 be rejected ?

1. Define the hypotheses H0 : µ = 20; H1 : µ > 20

2. Set a level: 1− α = 0.05

3. Use the relevant distribution: (X̄ − µ)/(S/
√

n − 1) ∼ t(n−1) with n = 30

4. If (X̄ − µ)/(S/
√

n − 1) ∼ tn−1 is “too large” I should reject H0

5. One reads P(t(29) ≤ tc) = 0.95.

tc is the critical value. Here, tc = 1.70.

6. (X̄ − µ)/(S/
√

n − 1) = (22.2− 20)/
√

52/29 = 1.64 < 1.7

7. The null hypothesis H0 is not rejected.

”The sample was not able to prove H0 was guilty”
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Testing the mean: assessing the power

Example: testing the mean

H0 : µ = µ0 vs. H1 : µ = µ1 > µ0

X1 = X0 + (µ1 − µ0) ∼ N (µ0 + (µ1 − µ1), σ2)

Some mathematics

P(H1 | H1) = P

(
X̄ − µ0

S/
√

n − 1
≥ tc

)

= P

(
X̄0

S/
√

n − 1
≥ tc −

µ1 − µ0

S/
√

n − 1

)

= 1− Ftn−1

(
tc −

µ1 − µ0

S/
√

n − 1

)
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Testing the mean: assessing the power

Example: unilateral tests for the mean

H0 : µ = µ0 vs. H1 : µ = µ1 > µ0

X1 = X0 + (µ1 − µ0) ∼ N (µ0 + (µ1 − µ1), σ2)

> delta = seq(0,10,by=0.1)
> tc = qt(0.95,df=29)
> pow = 1 - pt(tc - delta*delta/sqrt(var(Ni)),df=29)
> plot(20+delta,pow,main="Power",xlim=c(18,30),ylim=c(0,1),
> xlab=expression(mu[1]),ylab="power",pch=19)
> abline(h=0.05,lwd=3,col="blue")
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Testing the mean: assessing the power
Example: unilateral tests for the mean

H0 : µ = µ0 vs. H1 : µ = µ1 > µ0

X1 = X0 + (µ1 − µ0) ∼ N (µ0 + (µ1 − µ1), σ2)
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p-value

We do not set a level beforehand. Instead, one computes the probability of rejecting
H0, given the data.

Definition of the p-value
The probability of obtaining an ”equal or more extreme” test statistics than what was
actually observed, assuming H0 is true.

I A small p-value (≤ 0.05) indicates strong evidence against the null hypothesis, so
it is rejected.

I A large p-value (> 0.05) indicates weak evidence against the null hypothesis (fail
to reject).

I p-values very close to the cutoff (∼ 0.05) are considered to be marginal (need
attention).
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Back to our first example

The average of Ni should be µ = 20. In a sample of size 30, it is found that X̄ = 22.2
and S2 = 52.

Should H0 be rejected ?

p = 1− P
(

t(n−1) ≤ (X̄ − µ)/(S/
√

n − 1)
)

= 1− P
(

t29 ≤ (22.2− 20)/
√

52/29
)

= 1− P (t29 ≤ 1.643)

= 0.0556

Fail to reject, but not by much. Requires attention.

> Ni.sample <- sample(jura$Ni,size=30)
> t.test(Ni.sample,alternative = "greater",mu=20)
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Testing the variance

The variance of Ni should be σ2 = 65.5 (H0). In a sample of size 30, it is found that
S2 = 90.2.

Should H0 be rejected ?

1. Define the hypotheses H0 : σ2 = 65.5; H1 : σ2 > 65.5

2. Use the relevant distribution:

S2/(σ2/n) ∼ χ(n−1),

with n = 30

3. One reads P(χ(29) ≤ 90.2 ∗ 30/65.5) = 0.935.

The p-value is 0.065

4. The null hypothesis H0 is not rejected.

But close

> install.packages("EnvStats")
> library(EnvStats)
> varTest(x = Ni.sample,alternative="greater",sigma.squared=65.5,conf.level = 0.95)
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Back to data
Ni in different rock types

> boxplot(Ni ˜ jura$rt, horizontal=T, xlab="Ni",ylab="Rock Type")
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I Different means?
I Different variances?
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Testing two means

Test

H0 : µ1 = µ2; H1 : µ1 6= µ2

i.e.
H0 : µ1 − µ2 = 0; H1 : µ1 − µ2 6= 0

with σ2
1 = σ2

2 = σ2.

Under Gaussian hypothesis, we have

n1S2
1

σ2
∼ χ2

n1−1;
n2S2

2
σ2
∼ χ2

n2−1

and
X̄1 ∼ N (µ1, σ

2/
√

n1) X̄2 ∼ N (µ2, σ
2/
√

n2)
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Testing two means

Hence,
n1S2

1 + n2S2
2

σ2
∼ χ2

n1+n2−2

and
X̄1 − X̄2 ∼ N

(
µ1 − µ2 = 0, σ2(1/n1 + 1/n2)

)
.

Therefore, the test statistics is

T =
X̄1 − X̄2

(n1S2
1 + n2S2

2)(1/n1 + 1/n2)

√
n1 + n2 − 2 ∼ t(n1+n2−2)
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Testing two means: example

Jura data:

rt 1 2 3 4 5
X̄ 12.3 25.0 20.4 22.9 18.8
S2 31.0 54.6 32.0 50.5 57.2
n 76 124 89 6 64

Mean, variance and number of data, according to rock type

T-tests:

2 3 4 5
1 0 0 1.6 10−5 1.5 10−5

2 – 1.1 10−5 0.25 1.2 10−7

3 – – 0.16 0.07
4 – – – 0.10

p-value of T tests, assuming identical variance

> t.test(Ni[jura$Rock==1], Ni[jura$Rock==2], alternative = "two-sided")
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Testing two variances

Test

H0 : σ2
1 = σ2

2 ; H1 : σ2
1 6= σ2

2

i.e.
H0 : σ2

1/σ
2
2 = 1; H1 : σ2

1/σ
2
2 6= 1

Under Gaussian hypothesis, we have

n1S2
1

σ2
∼ χ2

n1−1;
n2S2

2
σ2
∼ χ2

n2−1

and
n1S2

1
n1 − 1

/
n2S2

2
n2 − 1

∼ Fn1−1,n2−1.
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Testing two variances: example

Jura data:

rt 1 2 3 4 5
S2 31.0 54.6 32.0 50.5 57.2
n 76 124 89 6 64

Variance and number of data, according to rock type

F-tests:

2 3 4 5
1 0.003 0.437 0.280 0.006
2 – 0.004 0.520 0.423
3 – – 0.298 0.007
4 – – – 0.353

p-value of F tests

> var.test(x = jura.Ni[jura$Rock==1],y = jura.Ni[jura$Rock==1],
alternative="two-sided" ,conf.level = 0.95)
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Comparison test(s)

Gaussian hypothesis: not a problem for large n, thanks to CLT
I X̄ → N as n→∞
I nS2/σ2 → χ2

n−1 → N as n→∞
I tn−1 → N as n→∞

For moderate n, (say n ≤ 30), the order is important:

1. Test for equal variance first;

2. If not rejected, test means
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Unit 2
Regression models and ANOVA
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Examples

Any relationship between Ni and x , or between Ni and Co ?
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Objectives

We have two series of values, X and Y .

1. We wish to know whether there is some sort of relationship between X and Y
Correlation coefficient, rank correlation, etc.

2. We wish to know whether Y can be predicted from X
Linear regression, Generalized linear regression, etc.

Estimation, tests, predictions
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Correlation coefficient

Definition from Probability
Let X and Y be two random variables. The linear correlation coefficient is

r = ρ(X ,Y ) =
Cov(X ,Y )

σXσY

where
Cov(X ,Y ) = E [(X − E [X ])(Y − E [Y ])] = E [XY ]− E [X ]E [Y ]

Property

ρ ∈ [−1, 1],

with

1. If ρ = 1, there is a linear relationship: Y = a + bX , with b > 0

2. If ρ = 0, there is no linear relationship at all

3. If 0 < ρ < 1 there is some amount of linear relationship

4. If ρ < 0 the linear relationship is negative (Y decreases as X increases)
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Estimation of the linear correlation coefficient

Estimator
Let (Xi ,Yi ), with i = 1, . . . , n, be a bivariate series of values.

ρ̂ =
ĈXY

SX SY

with
ĈXY =

1
n

∑
i=1n

(Xi − X̄)(Yi − Ȳ )

Sample of size 30, without repetitions. Correlation coefficient between Ni and Co

1. Cor #1: 0.73

2. Cor #2: 0.81

3. Cor #3: 0.79
...

4. Mean #100: 0.71
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Correlation coefficient
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Correlation coefficient

I Correlation does not (always) mean causality. It could be
- Spurious.

e.g., presence of outliers, compositional data, ...
- Due to a common cause

e.g. life expectancy increases with the consumption of lobsters; Ni increases with Co

I Absence of Correlation does not necessarily mean absence of relationship. Only
true for Gaussian vectors

Testing a correlation coefficient is difficult at this stage. Better within a regression
context
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Regression

I Target: identifying a model that relates variable Ozone to variable Wind

I Correlation between the two variables is (about) -0.6
I The scatterplot provides further insights about the negative relationship
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Wind
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I In other terms, we are interested in an asymmetric model where Wind is used to
”predict” Ozone.
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Remember

Statistics starts with a problem, proceeds with the collection of data, continues
with the data analysis and finishes with conclusions.

It is a common mistake of inexperienced statisticians to plunge into a complex
analysis without paying attention to the objectives or even whether the data are
appropriate for the proposed analysis.

As Einstein said, the formulation of a problem is often more essential than its
solution which may be merely a matter of mathematical or experimental skill.

J.J. Faraway, (2015) Linear models with R

92 / 146



Introduction Exploratory and R Random Variables Estimation Tests Regression ANOVA

Linear regression

I Model

observed value = deterministic component + random component
I Linear regression model: n observations y1, y2, . . . , yn:

yi = β0 + β1xi + εi , i = 1, . . . , n,

where εi are error terms
I Variable y is termed response
I Variable x is termed covariate or explanatory variable or predictor
I β0, β1 are termed parameters or regression coefficients
I In a linear model the parameters enter linearly

yi = β0 + β1x2
i + εi (linear model)

yi = β0 + β1xβ2
i + εi (nonlinear model)

I We suppose that E(yi ) = β0 + β1xi , var(yi ) constant
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I We want to predict the ozone concentration (the problem!)
I In our example, the response is Ozone and the predictor is Wind
I The linear regression model makes sense if

the errors are not systematic but they ”fluctuate” around zero
the spread of the errors is more or less constant, that is the level of the fluctuations
around zero does not depend on the observed values of the two variables

I In other terms, we ask that errors have zero mean and constant variance
I Quantities β0 and β1 are termed the intercept and the slope of the regression line,

respectively
I The pair of parameters (β0, β1) are also termed regression coefficients
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I Regression coefficients are parameters that need to be estimated from the
observed data

I By varying the pair of regression coefficients, we obtain infinite possible
regression lines

I The problem is how to select the line which better fits the data according to some
criterion

I Many methods available to estimate β0 and β1, the most diffuse is ordinary least
squares (OLS)

I Sum of squared residuals

SSR(β0, β1) =
n∑

i=1

{yi − (β0 + β1xi )︸ ︷︷ ︸
raw residual

}2

raw residuals r raw
i = yi − (β0 + β1xi )

I The pair (β̂0, β̂1) that minimizes SSR(β0, β1) identifies the best regression line in
terms of the method of ordinary least squares
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I Symbol hatˆdenotes the data-based estimate of a parameter:
least squares estimates (β̂0, β̂1)

raw residuals computed at (β̂0, β̂1) are errors estimates

ε̂i = yi −
(
β̂0 + β̂1xi

)
which are used for diagnostic (to answer questions like ”does the chosen line really fit
well the data?”)

I In R linear regression computed with function lm

> fit <- lm(Ozone˜Wind, data=airquality)
> fit
Call:
lm(formula = Ozone ˜ Wind, data = airquality)

Coefficients:
(Intercept) Wind
96.873 -5.551

I The (ordinary) least squares regression line is

Ozone = 96.87− 5.55Wind
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Useful to visualize observed points and the fitted model
> plot(Ozone˜Wind, data=airquality, ylim=c(-20, 200))
> abline(fit, col="red")
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I Predicted values of Ozone
> ozone.hat <- predict(fit, newdat a= + data.frame(Wind=airquality$Wind))

I We can compare predictions versus observed values
> plot(Ozone˜Wind, data=airquality, ylim=c(-20, 200))
> abline(fit, col="red")
> segments(x0=airquality$Wind, y0=airquality$Ozone, x1=airquality$Wind,

y1=ozone.hat, col="blue")
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I Blue segments are the raw residuals
I The regression line is chosen so to minimize the sum of the squared lengths of the

blue segments
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I Does the fitted model make sense? not really because it gives negative
predictions for large values of Wind!
> plot(Ozone˜Wind, data=airquality,
+ ylim=c(-20, 200))
> abline(fit, col="red")
> abline(h=0, col="green")
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I The points pattern suggests that the relationship between Ozone and Wind is not
well described by a regression line both at small and large values of Wind
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Regression and Transformations

I Solution: transform the response so to
avoid non-sense negative predictions of Ozone levels
make the relationship between Ozone and Wind ”more” linear

I Try with a log-transformation of Ozone
I Logarithm maps positive numbers to unrestricted numbers, thus avoiding the risk

of non-sense negative predictions
> fit2 <- lm(log(Ozone)˜Wind, data=airquality)
> plot(log(Ozone)˜Wind, data=airquality)
> abline(fit2, col="red")

5 10 15 20

0
1

2
3

4
5

Wind

lo
g(
O
zo
ne
)

100 / 146



Introduction Exploratory and R Random Variables Estimation Tests Regression ANOVA

Outliers

I Fit on log-scale not too bad, except for a few points
I The worse fitted point is the one with Ozone about 1 and Wind somehow smaller

than 10
> id <- which.min(airquality$Ozone)
> id
[1] 21
> airquality[id,]
Ozone Solar.R Wind Temp Month Day
21 1 8 9.7 59 5 21

I Observation 21 of Ozone is an outlier on the log-scale
I The term outlier denotes an observation that is ”distant” from the rest of the data
I Is the presence of one or more outliers a problem? not much in this case, but

sometimes outliers may have a strong impact
I An outlier which significantly affects the fitted regression line is called an influential

point
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As an example of influential point consider the hypothetical observation (Ozone=200,
Wind=50)

> plot(log(Ozone)˜Wind, data=airquality,
> ylim=c(0, log(200)), xlim=c(0, 50))
> points(50, log(200), col="blue", pch=16)
> abline(fit2, lty=1)
> fit3 <- lm( c(log(Ozone),log(200))˜c(Wind, 50),
+ data=airquality)
> abline(fit3, lty=2)
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I One single observation may have a substantial effect on the fitted regression line!
I Does this make sense? not really, as a good statistical model should fit well the

great majority of the data and not be influenced too much from few isolated
observations (which often have a ”special” meaning)

I Solution: use a fitting method that it is more resistant to outliers
I Robust Statistics. . .
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Residuals

I Diagnostic is very important to validate the fitted model
I Helpful to visualize the residuals in way to check:

absence of systematic effects
stable variance
. . .

I Residuals from an lm-fitted object are accessed by function residuals()

> res <- residuals(fit2)
> summary(res)
Min. 1st Qu. Median Mean 3rd Qu. Max.
-3.44000 -0.49980 0.06051 0.00000 0.53750 1.60500
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I A sensible diagnostic plot is the scatterplot of the residuals against the predictor
I Caution: there are missing values in Ozone which are discarded from the

regression fitting. Hence, the number of residuals is not equal to the number of
observed values of Wind
> length(res)
[1] 116
> length(airquality$Ozone)
[1] 153
> sum(is.na(airquality$Ozone)) #how many NAs?
[1] 37
> length(airquality$Wind)
[1] 153

I Hence, we need to compare the residuals with values of Wind corresponding to
non-missing Ozone values
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I We can refit the model with option x=TRUE to extract these values
> fit2bis <- lm(log(Ozone)˜Wind, data=airquality, x=TRUE)
> head(fit2bis$x)
(Intercept) Wind
1 1 7.4
2 1 8.0
3 1 12.6
4 1 11.5
6 1 14.9
> airquality[1:8,]
Ozone Solar.R Wind Temp Month Day
1 41 190 7.4 67 5 1
2 36 118 8.0 72 5 2
3 12 149 12.6 74 5 3
4 18 313 11.5 62 5 4
5 NA NA 14.3 56 5 5
6 28 NA 14.9 66 5 6
7 23 299 8.6 65 5 7
8 19 99 13.8 59 5 8
> plot(x=fit2bis$x[,"Wind"], y=res)
> abline(h=0, lty="dashed")
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The scatterplot of the residuals versus Wind shows some problems for small values of
Wind (in addition to the well-known outlier)
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Multiple regression

I We may ask whether a more elaborated model can better fit the data
I For example the quadratic model

yi = β0 + β1xi + β2x2
i + εi , i = 1, . . . , n

where yi is the log-transformed Ozone

> fit3 <- update(fit2bis, .˜.+I(Windˆ2) )
> fit3
Call:
lm(formula = log(Ozone) ˜ Wind + I(Windˆ2), data = airquality,
x = TRUE)

Coefficients:
(Intercept) Wind I(Windˆ2)
5.83475 -0.36945 0.01116

I Function update() is used to add the quadratic term which needs to be specified
by function I()
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I The coefficient of the quadratic term is very small: does this mean that it cannot
be distinguished from zero (which means no quadratic effect)? or is the small
value due to the scale of the squared Wind?
> range(airquality$Windˆ2)
[1] 2.89 428.49

I Plot of the fitted quadratic model
> plot(log(Ozone) ˜ Wind , data = airquality)
> abline(fit2bis, col="red")
> curve( coef(fit3)[1]+coef(fit3)[2]*x+coef(fit3)[3]*xˆ2,
+ col="blue", add=TRUE)
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I Residuals of the the quadratic model
> res.quad <- residuals(fit3)
> summary(res.quad)
Min. 1st Qu. Median Mean 3rd Qu. Max.
-3.30200 -0.43220 0.05994 0.00000 0.49550 1.40000
> plot(x=fit3$x[,"Wind"], y=res.quad, main="quadratic")
> abline(h=0, lty="dashed")
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I The residuals of the quadratic model improve on with respect to those of the linear
model
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Coefficient of determination

I The coefficient of determination R2 is the proportion of variability in the response
that is accounted for by the statistical model

I Ingredients:
the total sum of squares

SST =
n∑

i=1

(yi − ȳ)2

this is n times the variance of y , s2
y = SST/n

the residual sum of squares

SSR =
n∑

i=1

(yi − ŷi )
2

the explained sum of squares

SSE =
n∑

i=1

(ŷi − ȳ)2

I Decomposition of the sum of squares: SST = SSR + SSE
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I The R2 index is defined as

R2 = 1−
SSR
SST

=
SSE
SST

I Properties of R2 index
R2 assumes values between 0 and 1
the better the model, the smaller the residual sum of squares (=R2 closer to 1)

I The R2 index can be obtained from the summary of an lm object
> summary(fit2)$r.squared
[1] 0.289894

I We can compare this value with the R2 of the quadratic model
> summary(fit3)$r.squared
[1] 0.3431879

I The latter value is somehow larger, thus supporting the use of the quadratic
model, but . . .

I . . . this conclusion requires care because it can be shown that inclusion of any
further predictor yields to an improvement of R2
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I As an illustration, suppose we add a randomly generated predictor
I We can generate the random predictor with the following code

> n.obs <- nrow(airquality)
> set.seed(12345)
> simul <- rnorm(n.obs)
> simul[1:10]
[1] 0.5855288 0.7094660 -0.1093033 -0.4534972 0.6058875
[6] -1.8179560 0.6300986 -0.2761841 -0.2841597 -0.9193220
> cor(simul, airquality$Ozone, use="complete.obs")
[1] 0.03607404

I Although variable simul has been generated in way to be completely unrelated
with Ozone, some (very) small degree of correlation is observed

I Now, consider the multiple regression model

log(Ozone) = β0 + β1 Wind + β2 Wind2 + β3 simul + ε,

where the term multiple indicates that more than one predictor is used
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I Multiple regression
> fit4 <- update(fit3, .˜.+simul)
> fit4

Call:
lm(formula = log(Ozone) ˜ Wind + I(Windˆ2) + simul, data = airquality,
x = TRUE)

Coefficients:
(Intercept) Wind I(Windˆ2) simul
5.831822 -0.369093 0.011154 0.006625
> summary(fit4)$r.squared
[1] 0.3432537
> summary(fit3)$r.squared
[1] 0.3431879

I The R2 for the model with the random predictor is slightly larger than the one
without the random predictor
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I The adjusted R2 index is constructed so that irrelevant increases of the R2 are
penalized

R2
adj = 1−

SSE/(n − p − 1)

SST/(n − 1)
,

where p is the number of regression coefficients
2 in the linear model
3 in the quadratic model
4 in the quadratic plus random predictor model

I The adjusted R2 indices for the three models are
> summary(fit2)$adj.r.squared
[1] 0.283665
> summary(fit3)$adj.r.squared
[1] 0.3315629
> summary(fit4)$adj.r.squared
[1] 0.3256622

I Correctly, the adjusted R2 reveals that the improvement due to the random
predictor is irrelevant and thus the quadratic model is preferred
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Standardized Residuals

I Validation of linear regression models often based on standardized residuals (aka
Pearson residuals)

I Standardization has two advantages:
removing scale effects
standardized residuals are realizations of a standard normal variable (if the model is
correctly specified)

I Standardized residuals for the quadratic model

log(Ozone) = β0 + β1 Wind + β2 Wind2 + ε

> res.standard <- residuals(fit3)
> summary(res.standard)
Min. 1st Qu. Median Mean 3rd Qu. Max.
-3.30200 -0.43220 0.05994 0.00000 0.49550 1.40000

I If residuals were realizations from N (0, 1) then the probability of observing
something smaller than −3 is 0.1%

I Thus, the residual equal to -3.3 is quite unusual
I Which one is the observation corresponding to this residual?
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I Helpful checking the normality of the standardized residuals by normal probability
plots
> qqnorm(res.standard)
> qqline(res.standard)

-2 -1 0 1 2

-3
-2

-1
0

1

Normal Q-Q Plot

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s

I Standardized residuals look rather OK (but not perfectly OK), except for the
well-known outlier. . .
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I Consider again the multivariate regression model

log(Ozone) = β0 + β1 Wind + β2 Wind2 + β3 simul + ε

where simul was a random normal sample completely unrelated to Ozone or
Wind

> fit4
Call:
lm(formula = log(Ozone) ˜ Wind + I(Windˆ2) + simul,
data = airquality, x = TRUE)

Coefficients:
(Intercept) Wind I(Windˆ2) simul
5.831822 -0.369093 0.011154 0.006625

I We know that the true value of the coefficient for simul is zero. Its estimate is very
small but not zero because of the sample uncertainty

I Also the estimated coefficient for Wind2 is quite small, but the R2 index suggests
that the squared term was useful

I In fact, we already said that the estimated coefficient for Wind2 is small as a
consequence of the relative large values of Wind2
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Validation

Checking the model:
I Checking the linearity
I Checking the assumptions on ε: equal variance, Gaussian, independent

If the model is not validated, more complex models should be found
I Transform the variables: squares, log, exp, cosine, etc...
I Add more covariates
I Introduce temporal or spatial dependencies [later !]
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Validation
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Linear model

Some theory for the linear model
General notation

Y = Xβ + ε

where
I Y is a n vector of observed variables
I X is a n × p matrix of covariates (continuous or categorical). There are p

covariates; one covariate is a column of one, accounting for the mean
I β is the p × 1 vector of unknown parameters
I ε is a n × 1 vector of i.i.d. random values, usually ∼ N (0, σ2)

X is called the design matrix. We assume we can invert it.
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Some theory for the linear model

Linear model
General notation

Y = Xβ + ε

Attention ! Linear means linear combinations of covariates. Covariates could be t ,
cos t , t2, etc..

Remember log(Ni) vs. log(Co)

Some tasks in regression:
I Estimate β

I Test covariates
I Test models against each other
I Select the best model (if any)

Regression with two variables; ANOVA
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Some theory for the linear model

Projection
Mathematically, a linear model is a projection onto the subspace spanned by the
covariates, (where the constant function being one of them).

One seeks the vecteur β̂ such that

‖Y− Xβ̂‖2

is minimum.

Therefore, Ŷ = Xβ̂ is a projection.

The relationship
SST = SSE + SSR

is nothing but the Pythagoras theorem in this abstract space.
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Some theory for the linear model

Projection
In this framework one can show that

I The estimator β̂ is unbiased, i.e.

E [β̂] = β

I Under Gaussian hypothesis, it is also the ML estimator, with optimality properties
I The estimator of the variance is

σ̂2 = SSR/(n − p)

I The coefficient of determination is

R2 = SSE/SST = 1− SSR/SST .

It is the proportion of variance explained by the model.
I The adjusted coefficient of determination is

R2
∗ = 1− SSR/(n − p − 1)

/
SST /(n − 1) < R2
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Coefficient of determination
The coefficient of determination, denoted R2, is

R2 =
SSE

SST
= 1−

SSR

SST

It measures how well the model fits the data. By definition, O ≤ R2 ≤ 1.

Properties
I For a simple regression model, we have

R2 = ρ2

I Under Gaussian hypothesis for εi , we have for β1 = 0,

SSE

SSR
∼ F(1, n − 2)
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Some theory for the linear model

Nested models
Model M0 is nested in model M1 if model M0 can be obtained from M1 by removing
some covariates (i.e. some columns of X).

e.g. Ni, as a function of Co only is a nested model of Ni as a function of Cd and Co.

I In regression, we would like to know whether a subset of variable is sufficient, or if
additional variables are necessary

I In analysis of variance, we would like to know if one factor can be removed

Obviously M1 has more parameters, it is likely to fit the data better (we add dimensions
in the subspace in which we project):

SSM1 > SSM0

Is this increase significant or is it due to chance? Do a statistical test!
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Some theory for the linear model

Testing nested models
Let us test ”H0 : model M0 is true” vs. ”H1 : model M1 is true”

Theorem
Under Gaussian hypothesis for ε,

(SSM1 − SSM0 )/(p1 − p0)

SSR1/(n − p1)
∼ F(p1 − p0, n − p1)

Note: this a generalization of the result seen for linear regression, with M1 being for
a + bx and M0 for intercept a only.
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Regression with two variables

fit = lm(log(Ni) ˜ long + log(Co), data = jura)
summary(fit)
Call:
lm(formula = log(Ni) ˜ long + log(Co), data = jura)

Residuals:
Min 1Q Median 3Q Max
-0.83764 -0.19079 0.01704 0.19310 0.98855

Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -8.44983 8.13293 -1.039 0.300
long 1.37677 1.18815 1.159 0.247
log(Co) 0.88247 0.03245 27.194 <2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.2806 on 356 degrees of freedom
Multiple R-squared: 0.6909,Adjusted R-squared: 0.6891
F-statistic: 397.8 on 2 and 356 DF, p-value: < 2.2e-16
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Introduction to ANOVA: the analysis of variance

Sometimes, data are categorical, or ordinal with very few modalities: they are factors
I Landuse and Rock in the Swiss Jura data set
I Age, with few modalities: child, young, adult, senior [fish ??]
I Type of rocks, with few modalities according to e.g. porosity
I ...

A linear regression does not make much sense. We need to do something else.

Modalities are considered as levels of the factor. For example

I Factor = Rock: Levels = Argovian, Kimmeridgian, Portlandian,
Quaternary, Sequanian

I Factor = LandUse: Levels = Forest, Meadow, Pasture, Tillage
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Introduction to ANOVA: the analysis of variance

Several cases:

I One factor, several levels
I Two factors, several levels: balanced or unbalanced
I Many factors, two (or many) levels, generally unbalanced
I Optimal design

Notations:

I i = 1, . . . , I, are the levels of the factor
I k = 1, . . . , ni , are the repetitions within level i of the factor
I There is a total of n =

∑I
i=1 ni data

I If there is a second factor, we use index j = 1, . . . , J,
I nij is the number of repetitions of data within level (i, j) ∈ I × J.
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ANOVA with one factor

The model
We write

Yik = µ+ αi + εik

with i = 1, . . . , I, k = 1, . . . , ni and

εik ∼ N (0, σ2), i.i.d

The values αi are the effect of level i .

I There are I + 1 parameters for the mean (µ, α1, . . . , αI). This is one too many.
We will have to impose constraints, e.g; α1 = 0 (as in lm())

I Equivalent to the model
Yik = µi + εik
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ANOVA with one factor

Marix notation

Y = Xθ + ε,

with, for I = 5,

Y =


Y1
Y2
...

Yn

 , X =


1 0 0 1 0 0
1 0 1 0 0 0
...

...
...

...
...

...
1 0 0 0 0 1


and θ = (µ, α1, . . . , α5)t

The first column is the sum of all other columns. Matrix X is of rank I.
Need to impose constraints.

I A set of constraints reducing the number of parameters is called a contrast.
I The function lm uses α1 = 0: pretty simple
I An other natural possibility is to impose

∑I
i=1 αi = 0

I Estimates for each level will depend upon the contrast, when design is unbalanced
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ANOVA with one factor

It is convenient to write

Yi· = n−1
i

ni∑
k=1

Yik , Y·· = n−1
I∑

i=1

ni Yi·

Source DF Sum of squares Mean Sum of Squares

Model I − 1 SSE =
∑I

i=1 ni (Yi· − Y··)2 SSM/(I − 1)

Residuals n − I SSR =
∑I

i=1
∑ni

k=1(Yik − Yi·)
2 SSR/(n − I)

Total n − 1 SST =
∑I

i=1
∑ni

k=1(Yik − Y··)2 SST /(n − 1)

Remember:
R2 = SSE/SST
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ANOVA with one factor
Test

H0 : {α1 = · · · = αI = 0} = {Yik = µ+ εik , ∀i}

vs.
H1 : {∃i : αi 6= 0} = {Yik = µ+ αi + εik , ∀i}

Test statistics

F =
SSM/(I − 1)

SSR/(n − I)
=

Explained variance by Model
Residual variance

Under H0, and with a Gaussian hypothesis,

F ∼ FI−1,n−I ⇒ P(F > FI−1,n−I)

Rock type in Swiss Jura

R2 = 7738/23454 = 0.33; F =
7738/4

15716/354
= 43.6

P(F4,355 > 43.6) = 0

There is a highly significant effect of rock types
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ANOVA: Ni ˜ Rock

> fit = lm(Ni ˜Rock,data=jura)

> summary(fit)
Call:
lm(formula = Ni ˜ Rock, data = jura)

Residuals:
Min 1Q Median 3Q Max
-22.9798 -4.1086 -0.3598 4.2306 28.2402

Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 12.2784 0.7643 16.065 < 2e-16 ***
RockKimmeridgian 12.6814 0.9707 13.065 < 2e-16 ***
RockSequanian 8.1405 1.0407 7.822 6.03e-14 ***
RockPortlandian 10.6082 2.8255 3.754 0.000203 ***
RockQuaternary 6.5303 1.1304 5.777 1.67e-08 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 6.663 on 354 degrees of freedom
Multiple R-squared: 0.3299,Adjusted R-squared: 0.3223
F-statistic: 43.57 on 4 and 354 DF, p-value: < 2.2e-16
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ANOVA: Ni ˜ Rock
boxplot(lmNi$residuals ˜ rt)
abline(h=0,col="blue",lwd=2)

Argovian Kimmeridgian Sequanian Portlandian Quaternary

−
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−
10

0
10

20
30

Note: effect of unbalanced design.
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ANOVA: Ni ˜ rt
> par(mfrow=c(2,2))
> for (k in c(1,2,3,5)) hist(fit$residuals[jura$Rock==levels(jura$Rock)[k]],

xlab="Residuals",main=levels(jura$Rock)[k])
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Note: Not quite Gaussian,
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ANOVA with two factors
I i = 1, . . . , I, are the levels of the first factor
I j = 1, . . . , J, are the levels of the second factor
I k = 1, . . . , nij , are the repetitions within levels (i, j) ∈ I × J of the factor

I There is a total of n =
∑I

i=1
∑J

j=1 nij data

The mathematics become cumbersome unless balanced design, i.e. nij = K .
Important mathematical properties follow.

This is not the case for Swiss Jura data set:

> freqJ
[,1] [,2] [,3] [,4]

[1,] 11 10 53 2
[2,] 32 32 57 3
[3,] 5 31 51 2
[4,] 3 1 2 0
[5,] 0 8 55 1
> average

[,1] [,2] [,3] [,4]
[1,] 0.03 0.03 0.15 0.01
[2,] 0.09 0.09 0.16 0.01
[3,] 0.01 0.09 0.14 0.01
[4,] 0.01 0.00 0.01 0.00
[5,] 0.00 0.02 0.15 0.00
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ANOVA with two factors

The model
We write

Yijk = µ+ αi + βj + γij + εijk

with i = 1, . . . , I, j = 1, . . . , J, k = 1, . . . , nij and

εijk ∼ N (0, σ2), i.i.d

The values αi , βj and γj are the effect respectively of level i , level j and interaction ij .

Interaction
When γij = 0, we have for all i = 1, . . . , I

µi1 − µi2
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ANOVA with two factors

Example inspired from Jura Swiss data set:

1 2 3 4 5
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With interaction

i

N
i
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ANOVA with two factors

It is convenient to write

Yij· = n−1
ij

nij∑
k=1

Yijk , Yi·· = n−1
i·

J∑
j=1

nij Yij·, Y··· = n−1
I∑

i=1

ni·Yi··,

with ni+ =
∑n

j=1 nij .

Source DF Sum of squares Mean Sum of Squares

Model IJ − 1 SSM =
∑I

i=1
∑J

j=1 nij (Yij· − Y···)2 SSM/(IJ − 1)

Residuals n − IJ SSR =
∑I

i=1
∑J

j=1
∑ni

k=1(Yijk − Yij·)
2 SSR/(n − IJ)

Total n − 1 SST =
∑I

i=1
∑J

j=1
∑ni

k=1(Yijk − Y···)2 SST /(n − 1)

Remember: n = IJK
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ANOVA with two factors

Test

H0 : {α1 = · · · = αI = 0, β1 = · · · = βJ = 0, γ11 = · · · = γIJ = 0, }

vs.
H1 : {∃(i, j) : αi 6= 0 or βj 6= 0 or γij 6= 0}

I This is similar to a one factor analysis of variance with IJ levels.
I But there is more to it: can we decompose effect of A, B, and interaction?

Let us define decompose
SE = SSA + SSB + SSI

with
I SSE =

∑I
i=1
∑J

j=1 nij (Yij· − Y···)2

I SSA =
∑I

i=1 ni+(Yi·· − Y···)2

I SSB =
∑J

j=1 n+j (Y·j· − Y···)2

I SSI =
∑I

i=1
∑J

j=1 nij (Yij· − Yi·· − Y·j· − Y···)2
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ANOVA with two factors

> anova(lm(Ni ˜ Rock + Landuse + Rock*Landuse,data=jura))
Analysis of Variance Table

Response: Ni
Df Sum Sq Mean Sq F value Pr(>F)
Rock 4 7738.0 1934.51 52.4628 < 2.2e-16 ***
Landuse 3 1116.3 372.12 10.0916 2.188e-06 ***
Rock:Landuse 10 2026.0 202.60 5.4944 1.394e-07 ***
Residuals 341 12574.0 36.87
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

And we can test for each of this effect!
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ANOVA with two factors: tests

Test for effect A:
H0(A) = {α1 = · · · = αI = 0}

The test statistics is

FA =
SSA/(I − 1)

SSR(n − IJ)
∼ F(I−1),(n−IJ)

and n − IJ = IJ(K − 1).

Test for interaction:
H0(I) = {γij = 0, ∀(i, j) ∈ I × J}

The test statistics is

FI =
SSI/(I − 1)(J − 1)

SSR(n − IJ)
∼ F(I−1)(J−1),(n−IJ)
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ANOVA with two factors: unbalanced case
> jura.sel = jura[sample(1:359)[1:100],]
> anova(lm(Ni ˜ Rock + Landuse + Rock*Landuse,data=jura.sel))
Analysis of Variance Table

Response: Ni
Df Sum Sq Mean Sq F value Pr(>F)
Rock 4 2187.05 546.76 14.8596 3.025e-09 ***
Landuse 3 230.38 76.79 2.0870 0.10795
Rock:Landuse 7 714.47 102.07 2.7739 0.01202 *
Residuals 85 3127.60 36.80
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

> jura.sel = jura[sample(1:359)[1:100],]
> anova(lm(Ni ˜ Rock + Landuse + Rock*Landuse,data=jura.sel))
Analysis of Variance Table

Response: Ni
Df Sum Sq Mean Sq F value Pr(>F)
Rock 4 2046.9 511.72 12.8062 3.203e-08 ***
Landuse 3 234.7 78.24 1.9581 0.126327
Rock:Landuse 6 1148.2 191.37 4.7893 0.000294 ***
Residuals 86 3436.4 39.96
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

I Significances depend on the sample
I Conclusion might change if p-value close to threshold 145 / 146
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ANOVA with two factors: unbalanced case

I When the design is unbalanced, the sum of squares do not sum up: we loose
orthogonality and independence

I The test statistics F depend upon the order in which the factors are tested

Two methods are usually considered

- We fix an order, using priori information or expert knowledge. Results will depend
on the order. Consider two very correlated factors, both significant. The second
one will be considered as non significant.

- We can consider all orders, following the above set-up

- We consider each factor in turn, as the last factor. Here we lose the summation to
SST . Attribution of fraction of variance is difficult. Also, two significant correlated
factors will be considered as non-significant because always considered last.

Very carefull analysis when unbalanced design
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