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Unit 3
An introduction to time series and their analysis
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What is a time series ?

I A time series (ts) is a set of observations taken sequentially in time
I A ts can be represented as a set of pairs

{(t , yt ) with t ∈ {t1, t2, t3 . . . , tn} and y ∈ {y1, y2, y3, . . . , yn}

I Time can be:
Equally spaced; t = {1, 2, 3, 4, 5}
Equally spaced with missing values; t = {1, 2, 4, 5, 6}
Unequally spaced; t = {2, 3, 4, 6, 9}
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Examples
Measurements of the annual flow of the river Nile at Ashwan 1871–1970. (Nile data
set part of the R package)
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Examples
Average monthly air temperatures (in Celsius) at Recife, Brazil over the period from
1953 to 1962 (Chatfield 2004).

Recife, Brazil Temperature Data
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Examples
Atmospheric concentrations of CO2 (ppm) as reported in a 1997 Scripps Institution of
Oceanography (SIO) publication (CO2 data set part of the R package)
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Examples
Annual numbers of lynx trapped in Canada from 1821-1934 (lynx data set part of the
R package)
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The ts class
I The basic time series object in R is a ts object
I The ts() function is used to create a ts object ts() takes several arguments

> recife.dat <- scan("recife.txt")
> plot(recife.dat)
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The ts class
> recife.ts <- ts(recife.dat, start = c(1953, 1),
+ end = c(1962, 12),frequency = 12)
> plot(recife)
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Goal of the time series analysis

I Is there a trend in the data over time ?
I Is there seasonal variation in the data over time ?
I Is there remaining temporal correlation ?
I Can we use the data for forecast future observations ?
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Classical decomposition of time series

I Classical decomposition of an observed time series is a fundamental approach in
time series analysis

I The idea is to decompose a time series {yt} into a deterministic part ( ft ), a trend
(mt ), a seasonal component (st ), and a remainder (εt )

yt = ft + εt

= mt + st + εt

I The trend and the seasonal component are deterministic
I The remainder is random. Usually,

εt ∼ N (0, σ2)

I Can be independent, but usually temporal correlation is considered
I We first ”extract” the deterministic part, and then we analyze the random part
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Regression methods (with no seasonality)

I polynomial trend (e.g. second order):

mt = b0 + b1t + b2t2

I polynomial regression
yt = b0 + b1t + b2t2 + εt

I we fit the unknown parameters using least squares
> tt <- as.numeric(time(Nile))
> fit <-lm(Nile˜poly(tt,degree=2,raw=TRUE))
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Regression methods (with no seasonality)
> plot(Nile)
> lines(tt,predict(fit2),col=’red’)
> lines(tt,predict(fit4),col=’blue’)
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Regression methods (with seasonality)
I Seasonal effects in Recife data

> monthplot(recife)
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Regression methods: periodic functions
I We can use a periodic function i.e a linear combination of sinus and cosinus

functions of period 12.
I For example

f (t) = 2 + 3× sin((2π/12)t)− 2.4× cos((2π/12)t),

when t = 1, 2, . . . , 12.
> curve(2+3*sin(2*pi*x/12)-2.4*cos(2*pi*x/12),
+ from=0,to=100,xlab="t",ylab="f(t)")
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Regression methods: periodic functions
We can fit the following model:

yt = d0 + d1sin((2π/12)t) + d2cos((2π/12)t) + εt

> tt<-1:length(recife)
> s1<-sin(tt*2*pi/12)
> s2<-cos(tt*2*pi/12)
> fit.periodic<-lm(recife˜s1+s2)
> summary(fit.periodic)

Call:
lm(formula = recife ˜ s1 + s2)

Residuals:
Min 1Q Median 3Q Max

-1.05539 -0.34025 0.00019 0.24647 2.11767

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 25.75167 0.04808 535.62 <2e-16 ***
s1 1.00372 0.06799 14.76 <2e-16 ***
s2 1.07718 0.06799 15.84 <2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.5267 on 117 degrees of freedom
Multiple R-squared: 0.8003,Adjusted R-squared: 0.7969
F-statistic: 234.5 on 2 and 117 DF, p-value: < 2.2e-16
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Regression methods: periodic functions

pred.periodic<-predict(fit.periodic)
plot(recife.ts,lwd=2)
lines(as.numeric(time(recife.ts)),pred.periodic,col=’blue’,lwd=2)
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Regression methods: trend+ seasonality
I We can combine linear trend and periodic function for seasonal effect
I we fit the whole model

yt = b0 + b1t + d1sin((2π/12)t) + d2cos((2π/12)t) + εt

> fit.complete <- lm(formula = recife.ts ˜ poly(tt, 1, raw = TRUE) + s1 + s2)
> summary(fit.complete)
Call:
lm(formula = recife.ts ˜ poly(tt, 1, raw = TRUE) + s1 + s2)

Residuals:
Min 1Q Median 3Q Max
-1.18583 -0.30197 0.00491 0.25628 1.99057

Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 25.505460 0.093782 271.965 < 2e-16 ***
poly(tt, 1, raw = TRUE) 0.004070 0.001346 3.023 0.00308 **
s1 1.018910 0.065937 15.453 < 2e-16 ***
s2 1.073106 0.065759 16.319 < 2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.5093 on 116 degrees of freedom
Multiple R-squared: 0.8149,Adjusted R-squared: 0.8101
F-statistic: 170.2 on 3 and 116 DF, p-value: < 2.2e-16

18 / 175



TS Regression for TS Correlograms ARMA Models Forecasting Spatial Data Variograms Kriging

Regression methods: trend+ seasonality

> summary(fit.complete)
> pred.complete<-predict(fit.complete)

> plot(recife.ts,lwd=2)
> lines(as.numeric(time(recife.ts)),pred.complete,col=’red’,lwd=2)
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Regression methods: trend+ seasonality

Time series decomposition
I Trend

m̂t = b̂0 + b̂1t

> fit <- fit.complete
> trend<- ts(coef(fit)[1]+ coef(fit)[2]*tt,
+ start = start(recife), frequency = frequency(recife))

I Seasonality
ŝt = d̂1sin((2π/12)t) + d̂2cos((2π/12)t)

> season<-ts(coef(fit)[3]*s1+ coef(fit)[4]*s2,
+ start = start(recife),frequency = frequency(recife))

I residuals
ε̂t = yt − ŷt

> res<-ts(residuals(fit),
+ start = start(recife), frequency = frequency(recife))
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Regression methods: trend+ seasonality
> plot.ts(cbind(recife,trend,season,res))
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Other trend modeling approaches

We have seen the fitting of parametric functions There are other possibilities

I Moving averages methods, e.g.

mt =
yt + yt−1 · · ·+ yt−p+1

p

I Removing trends by differences. Example: we suppose that the series has a
linear trend

yt = b0 + b1t + εt

then

∇yt = yt − yt−1

= (b0 + b1t + εt )− (b0 + b1(t − 1) + εt−1)

= b1 + εt − εt−1

I Non linear regression (kernels, Nadaraya-Watson, splines), see e.g. loess
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Non parametric trends

tt <- as.numeric(time(Nile))
Nile.np <- loess(Nile˜tt)
summary(Nile.np)
plot(Nile,xlab="Time",ylab="Nile")
Nile.loess.pred <- predict(Nile.np,data.frame(tt))
lines(tt,Nile.loess.pred,col="blue")
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Context

Water Framework Directive

I Directive 2000/60/EC
I Establishing a framework for Community action in the field of water policy
I The Directive aims for ’good status’ for all ground and surface waters
I Groundwater must achieve “good quantitative status” and “good chemical status”

(i.e. not polluted) by 2015
I River basin (the spatial catchment area of the river) as a natural geographical and

hydrological unit
I They are managed according to River Basin Management Plans
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Context

I Nitrate content in groundwater
I Government must prove that chemical status must either be below limit or must

improve
I Time series from de-identified data and region
I Is there a trend ?
I Is there a change process ?
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Formalization

Three competing models

I Model M0: constant mean; constant variance: 1 parameter
I Model M1: linear trend; constant variance: 2 parameters
I Model M2: two linear trends; one change point; continuity is imposed: 4

parameters

1. Testing M1 vs. M0 is straightforward

2. Testing M2 vs. M0 is OK. It is a particular linear model

3. Testing M2 vs. M1 is not obvious. M1 is not nested within M2. Therfore, in theory,
we cannot use F statistics.
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Other statistical issues

I Short series
I Isolated data
I Long interruption in the time series
I Detecting outliers

Detecting outliers
I Do a non parametric estimation of Nitrate vs. time
I Compute a pointwise CI corresponding to a very high level, i.e.

P{N(t) 6∈ CI(t) } = α

with α = 0.005.
I Remove all points outside the CI
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Detecting outliers
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Model selection

1. Check residuals

2. F test when possible (M1 vs M0; M2 vs M0)

3. p-value of slopes

4. Use Bayesian Information Criterion (BIC) otherwise

The Bayesian Information Criterion
Definition

BIC = −2 ln L̂ + p ln n,

where p is the number of parameters.

In the Gaussian case, with i.i.d. errors,

BIC = n ln σ̂2
ε + p ln n

or
BIC = n ln(SSR/n) + p ln n
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Model M0
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Model M1
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Model M2
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Results

M0 M1 M2
SSR 1136.8 450.9 430.1
BIC 926.6 810.3 809.0
p-value — 10−27 0.05
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Stationary Time Series
I Suppose that we observe a time series values y1, . . . , yn
I These values can be interpreted as realization of a sequence of random variables
I Each variable yt has

a mean E(yt )
a variance Var(yt )

that can depend on t
Synthetic example:
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Stationary Time Series

Atmospheric concentrations of CO2 are expressed in parts per million (ppm) and
reported in the preliminary 1997 SIO manometric mole fraction scale.
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This plot show an evident periodic behaviour and a notable trend.
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Stationary Time Series
I Roughly speaking, a stationary time series is one that has the same mathematical

properties at any given time point.
I Mean and variance does change with time
I and it does not have periodic variations

Synthetic example

Time

y

0 20 40 60 80 100

−
2

−
1

0
1

2
3

36 / 175



TS Regression for TS Correlograms ARMA Models Forecasting Spatial Data Variograms Kriging

Stationary Time Series

Annual measurements of the level, in feet, of Lake Huron 1875-1972 were measured.
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This plot does not show any evident periodic behaviour, nor does it indicate a notable
trend.
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Correlation and autocorrelation

I The ’usual’ correlation between n pairs of observations on two variables x and y

r =

∑n
i=1(xi − x)(yi − y)√∑n

i=1(xi − x)2
∑n

i=1(yi − y)2

I Given n observations, under stationarity assumption we can form n − 1 pairs

(y1, y2), (y2, y3), . . . , (yn−1, yn)

the correlation between yt and yt+1

r1 =

∑n−1
t=1 (yt − y (1))(yt+1 − y (2))√∑n−1

t=1 (yt − y (1))2
∑n−1

t=1 (yt+1 − y (2))2
.
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Correlation and autocorrelation

I Since y (1) =
∑n−1

t=1 yt/(n − 1) and y (2) =
∑n−1

t=1 yt+1/(n − 1) are approximately
equal, a simplification is given by

r1 =

∑n−1
t=1 (yt − y)(yt+1 − y)√∑n

t=1(yt − y)2

I for yt and yt+k we get

rk =

∑n−k
t=1 (yt − y)(yt+k − y)√∑n

t=1(yt − y)2

I This is called the autocorrelation coefficient at lag k .
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The correlogram
I The correlogram is a graph where rk is plotted against the lag k .
I In R the command is acf(y) for a time series y.
I Only for regularly spaced time series
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The correlogram: examples

I A random series (or white noise)
I For a time series completely random, for large n, rk ' 0 for all non-zero values of

k.
> set.seed(19)
> y <-rnorm(500)
> acf(y)
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The correlogram: examples

I Short-term correlation
I Fairly large value of r1 followed by a few further coefficients which, while greater

than zero, tend to get successively smaller.
> acf(LakeHuron)
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The correlogram: examples
I Non-stationary series with trend
I the values of rk will not come down to zero except for very large values of the lag.

This is because large (small) values tend to be followed by a large number of
further large (small) values.
> acf(co2)
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I Note that in theory, because of the non stationarity, one should note use acf on
these data
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The correlogram: examples

I Seasonal fluctuations
I the correlogram exhibit an oscillation at the same frequency as the seasonality

> acf(recife)
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Verification of the randomness

I For a large number of observation and for a time series completely at random, the
autocorrelation rk ' 0

I Probability theory shows that rk ' N (0, 1/n)
I So that, if a time series is random, 19 out of 20 (95%) of the values of rk can be

expected to lie between ±
2
√

n
, the blue dashed lines in the correlogram.
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Randomness in the residuals

I Recall the classical decomposition

yt = mt + st + εt

I The trend component and the seasonal component are components that explain
the main pattern of the time series with respect to the time
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Randomness in the residuals
I after removing these components, we expect that the residuals

ε̂t = yt − (m̂t + ŝt )

loose any particular relationship with the time
I a way of checking this is to consider the correlogram of the residuals
I because we use a symmetric linear filter, values are missing at the beginning and

at the end.
I Nile time series with

m̂t =
yt−1 + yt + yt+1
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Randomness in the residuals

Nile residuals from Loess fit

> Nile.res <- ts(as.numeric(Nile - Nile.loess.pred),
start=start(Nile),end=end(Nile))

> plot(Nile.res)
> acf(Nile.res)
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Time series models

I Can we use the data for forecast future observations ?
I For doing this, we need a (stochastic) model that relates future observations
{yn+1, . . . , yn+k} to the observed data {y1, . . . , yn}

I Time series fall into the general field of Stochastic Processes which can be
described as random phenomenon that evolve over time.

I We have already encountered one example: the random time series which
consists of a sequence of random variables y1, y2, . . . that are independent and
have the same distribution.

I This model is called white noise provided that the mean is equal to zero and the
variance is equal to 1
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Autoregressive Processes
I The current value yt depends on the previous one only:

yt = φ1yt−1 + εt

where εt is a white noise, i.e. a sequence of i.i.d N (0, 1)
I The processes is called autoregressive process of order 1, AR(1).
I For |φ1| < 1, we have a stationary process.
I Autocorrelation:

rk = φk
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Autoregressive Processes

I Autoregression process of order p > 0, AR(p)

yt = φ1yt−1 + · · ·+ φpyt−p + εt

I Like a multiple regression model, except that the regressors are just the past
values of the series.

I Autoregressive series are stationary processes provided. the variance of the
terms are finite and this will depend on the value of the φ’s

I The autocorrelation rk decays to zero quickly for stationary process as a wave.
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Autoregressive Processes
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Moving Average Processes

I Moving average processes can be useful for modeling series that are affected by
a variety of unpredictable events where the effect of these events have an
immediate effect as well as possible longer term effects.

I Let {εt}t=1,2,... be a sequence of i.i.d random variables (usually N (0, 1))
I Moving average of order 1: MA(1)

yt = εt + θ1εt−1.

I The autocorrelation r1 is different from zero and the other values r2, r3, ... are in
theory equal to 0; in practice very small.
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Moving Average Processes

Moving average of order 1, MA(1):
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Moving Average Processes

Moving average of order q, MA(q)

yt = εt + θ1εt−1 + · · ·+ θqεt−q .

I Stationary process without any restriction for θi .
I the autocorrelation rq is different from zero and the other values rq+1, rq+2, ... are

in theory equal to 0; in practice very small.
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ARMA processes

I We can combine the moving average (MA) and the autoregressive models (AR)
processes to form a mixed autoregressive/moving average process.

I ARMA(1,1) model
yt = φ1yt−1 + εt + θ1εt−1.

I ARMA may adequately model a time series with fewer parameters than using only
an MA process or an AR process.

I In general, we can define ARMA(p,q) model
I Goal of statistical modelling: use the simplest model possible that still explains the

data (principle of parsimony).
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Identification of a times series model

Two steps:

1. Choosing p and q
The correlogram can greatly help in determining the appropriate value of p and q
for time series data.

2. Fitting the parameters of the model (φ1, . . . , φp , θ1, . . . , θq)

I Consider for instance a AR(2) model

yt = φ1yt−1 + φ2yt−2 + εt

I Sum of squared residuals

SSR(φ1, φ2) =
n∑

t=3

{yt − (φ1yt−1 + φ2yt−2)︸ ︷︷ ︸
residual

}2

I The pair (φ̂1, φ̂2) that minimizes SSR(φ1, φ2) identifies the best (auto)regression
in terms of the method of least squares

I Actually there are several estimation methods (see help(ar))
I We consider the annual measurements of the level of Lake Huron 1875:
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Fitting an Autoregressive Model

> plot(LakeHuron)
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The correlogram suggests a stationary time series
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Fitting an Autoregressive Model

> acf(LakeHuron)
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Fitting an Autoregressive Model
I We fit an AR(3)

> fit.1<-ar(LakeHuron,aic=FALSE,order=3)

I and we inspect the correlogram of the residuals
> acf(fit.1$resid,na.action=na.pass)
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I Determining the order p of an AR process is difficult.
I Correlogram for AR(p) processes for higher orders p can have complicated

behaviours
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The partial autocorrelation function
I Use the partial autocorrelation function (PACF).
I (Roughly speaking) The partial autocorrelation is the last coefficient φp in an

AR(p) model
I It measures the excess correlation at lag p that is not accounted for by an AR(p -

1) model.
I Plot of the estimates φ̂k of the last coefficient φk , for k = 1, 2, . . .

> pacf(LakeHuron)
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The plot suggests an AR(2) model
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Information Criteria (AIC/BIC)

I In order to choose a model from several competing other models, a popular
criterion for making the decision is to use a penalization of the likelihood.

I For a fitted AR time series of length n, the IC are defined to be

IC = goodness of fit + penalty for the complexity
AIC(p) = n × logarithm(Sum of square of residuals) + 2p
BIC(p) = n × logarithm(Sum of square of residuals) + p log n

I We choose the minimum AIC/BIC

> fit.aic<-ar(LakeHuron)
> fit.aic
Call:
ar(x = LakeHuron)

Coefficients:
1 2
1.0538 -0.2668

Order selected 2 sigmaˆ2 estimated as 0.5075

62 / 175



TS Regression for TS Correlograms ARMA Models Forecasting Spatial Data Variograms Kriging

Model identification: example
I Time series of 700 tree ring indices for Douglas fir at the Navajo National

Monument in Arizona. This data is available from 1263 to 1962 and is listed in a
report by Stokes et al. (1973).

I Stationary time series
> ring<-ts(scan(’navajo.txt’),
+ start=1263,frequency=1)
> plot(ring)
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Model identification: example
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An ARMA(1,1) model may adequately model the data
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Model identification: example

I We fit the model using the function arima

I General syntax: arima(x, order = c(p, d, q))
I Here

> ring<-ts(scan(’navajo.txt’),start=1263,frequency=1)
> plot(ring)
> ring.fit<-arima(ring,order=c(1,0,1))
> print(ring.fit)
Call:
arima(x = ring, order = c(1, 0, 1))

Coefficients:
ar1 ma1 intercept
0.6809 -0.4232 99.3762
s.e. 0.0824 0.1031 2.7280

sigmaˆ2 estimated as 1601: log likelihood = -3575.67, aic = 7159.34
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Model identification: example
Let us look at the residuals
> tsdiag(ring.fit)
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Model identification: example

Main features in the three plots
I No outliers (standardized residuals are in the interval [-3,3])
I No autocorrelation of the standardized residuals
I Observed P-value of the Liung-Box (LB) statistics indicates no autocorrelation

for the residuals
LB is based on the sum of the first k squared autocorrelation coefficients for the
residuals
P-values at different values of k are indicators of the randomness of the standardized
residuals
a p-value greater 0.05 points out that the time series of the standardized residuals looks
like a realisation of a white-noise
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Model identification: example

A competitive model could be a MA(2)

> ring.fit2<-arima(ring,order=c(0,0,2))
> print(ring.fit2)
Call:
arima(x = ring, order = c(0, 0, 2))

Coefficients:
ma1 ma2 intercept
0.2601 0.1969 99.449
s.e. 0.0369 0.0366 2.207

sigmaˆ2 estimated as 1608: log likelihood = -3577.3, aic = 7162.59

Let us we look at the residuals
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Model identification: example
Residual plot:
> tsdiag(ring.fit2)
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I both models pass the diagnostic check.
I for contrasting a set of models consider the AIC criterion and choose the
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Forecasting

Once a model has been identified and its parameters have been estimated, one
important purpose is to predict future values of a time series.

Reminders
I Forecast for linear regression model. The model for a new value (not necessarily

in the future) is
yi+1 = a + bxi+1 + εi+1

I we assume the knowledge of xi+1 and the prediction (plug-in prediction), after
estimating the parameters, is

ŷi+1 = â + b̂xi+1

Use the same approach in time series
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Forecasting AR(1) time series: one-step-ahead

I We know the values y1, . . . , yt (present and past) and we want to predict yt+1

I From now the forecast value will be indicated by ŷt

I Forecast for an AR(1) model:

yt+1 = φ1yt + εt+1

I we know the present and past values, so the plug-in prediction is

ŷt+1 = φ̂1yt

I the one-step-ahead forecasting error (residual) is

ε̂t = yt − ŷt

71 / 175



TS Regression for TS Correlograms ARMA Models Forecasting Spatial Data Variograms Kriging

Forecasting MA(1) time series: one-step-ahead

I Model (MA(1)) is
yt+1 = εt+1 + θ1εt

I Since we know the present past values, we can compute previous values of the
residuals

ε̂t = yt − ŷt ; ε̂t−1 = yt−1 − ŷt−1; · · ·
I The forecast is thus

ŷt+1 = θ̂1ε̂t

I Forecasts are calculated recursively.
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Forecasting ARMA(1,1) time series: one-step-ahead

I The model (ARMA(1,1)) is

yt+1 = φ1yt + εt+1 + θ1εt

I Since we know the present past values, we can compute previous values of the
residuals

I The forecast is thus
ŷt+1 = φ̂1yt + θ̂1ε̂t

Important
I We expect that the mean of ε̂t is approximately equal to zero
I A measure of forecast accuracy: prediction mean square error (PMSE) which is

the mean of the square of one-step-ahead forecasting errors.
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Important Remarks

I We can similarly do k -step ahead forecast: predicting yt+k using the present and
the past.

I An interval forecast usually consists of an upper and lower limit between which a
future value is expected to lie with a prescribed probability.

I The length of the interval is related to the variability of the k -step ahead forecast
errors; it increases with k

I a general espression is

[ŷt (k)− cv(k), ŷt (k) + cv(k)]

where c is a constant related to the prescribed probability and v(k) is standard
deviation of of the k-step ahead forecast error [For a (approximate) 95% interval
forecast one sets c = 2.]
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Forecasting in R

I Assume, that we are satisfied with the fit of an ARIMA(1,0,1)–model to the Lake
Huron–data:

I We wish to prediction for the next 8 years
> fit<-arima(LakeHuron,order=c(1,0,1))
> LH.pred<-predict(fit,n.ahead=8)
> LH.pred
$pred
Time Series:
Start = 1973
End = 1980
Frequency = 1
[1] 579.7334 579.5604 579.4316 579.3357 579.2642 579.2109 579.1713 579.1417

$se
Time Series:
Start = 1973
End = 1980
Frequency = 1
[1] 0.6891588 1.0070366 1.1459938 1.2162684 1.2535636 1.2737869 1.2848710
[8] 1.2909802

75 / 175



TS Regression for TS Correlograms ARMA Models Forecasting Spatial Data Variograms Kriging

Forecasting in R
Plot of the results
> plot(LakeHuron,xlim=c(1875,1980),ylim=c(575,584))
> LH.pred<-predict(fit,n.ahead=8)
> lines(LH.pred$pred,col="red")
> lines(LH.pred$pred+2*LH.pred$se,col="red",lty=3)
> lines(LH.pred$pred-2*LH.pred$se,col="red",lty=3)
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Unit 4
Introduction to Spatial Statistics
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Spatial Data

I Observations with explicit information about location (coordinates)
I Spatial structure is important for the observed variables: Tobler’s law

“observations taken at sites close together tend to be more alike than
observations taken at sites far apart”

I Non-spatial analyses of spatial data may yield incorrect statistical results
I Regression analysis that “forgets” dependence (any type of dependence: time

series, spatial, . . . ) may suggest that some predictors are important while they are
not
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Geostatistical Data

I The variable is defined at any location of the domain
I But it is measured at some limited number of points

e.g., temperatures, precipitations, soil data, air pollution, ...

I Characterizing spatial variations: variograms
I Predicting (interpolating) the variable at unmeasured locations: kriging
I Evaluating the prediction error, and the sampling design
I Simulating random processes with similar spatial variations
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Lattice Data
I Population related data; epidemiology ...
I data collected on administrative units; spatial econometrics
I Remote sensing data

I Characterizing spatial variations
I Testing independence between neighbours; residual analysis
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Point and object processes

I Location of trees (and other, kind of plants) in a forest; location of animals
I Location of earthquakes; avalanches; any type of natural hazards

I Characterizing the spatial distribution; complete randomness, regularity,
clustering?

I Relating the density of points, objects with respect to available co-variates
I Simulating spatial distributions of points and objects
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Difficulties

I Quite often, unique realization, with no replicates. For example: one pollution
event, one geological site, etc...
Hence several theoretical problems, since usually statistics is based on replicates

I Sometimes the studied area is clearly defined: limits of a country, of a region, ...
Sometimes it is part of the variable under investigation: soil pollution, orebody, fish
stocks, ...

I Possible bias: samples in ”interesting areas”
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Unbiased sampling

Three sampling approaches are always unbiased

I Random sampling
Inefficient coverage of the area, with redundancies and voids
but samples efficiently short distances

I Regular sampling
Good coverage of the area,
but no information at distances smaller than the mesh of the grid

I Stratified random sampling
Good balance between coverage and information at all distances
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Specifics difficulties with spatial data

I Non independent data
I No ordering when d ≥ 2
I Two types of asymptotics (i.e., when N →∞). Increasing the domain, or

densifying the data in fixed area
I Likelihood methods not always adapted
I Sometimes: border effects, string dependences,...
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Organization of the course

I Introduction to two main concepts in geostatistics: variograms, kriging
I with many illustrations
I ”Swiss Jura” data-set
I R Scripts
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Geostatistics

I The term geostatistics was coined by G. Matheron (1962)
I Matheron and his colleagues (in Fontainebleau, France) used this term for

prediction problems in the mining industry
I The prefix ’geo’ concerns data related to earth
I D. G. Krige (1919–2013 )and Matheron (1930 – 2000) formulated the theory of

geostatistics and kriging in the 1960s
I Today, geostatistical methods are applied in many areas beyond mining, such as

soil science
epidemiology
ecology
forestry
meteorology
astronomy
social sciences
. . .

I and, more in general, in all applications where data are collected at geographical
locations
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Terminology

I Domain D, here, part of R2

I Arbitrary point in D, s ∈ D.
I Observed spatial locations s1, . . . , sn, si ∈ D
I Observed values z(s1), . . . , z(sn)

I The function z(·) is called a regionalized variable
I We assume z(·) is one realization of a random field Z (·)

 We will need Stochastic models for random fields
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Distance

I 1D: coordinates s on a line w.r.t. some origin (0)
I 2D: coordinates s on a grid w.r.t. some origin (0, 0),

s = (s1, s2) = (x , y) = (E ,N)

I 3D: coordinates s are grid and elevation from a reference value,
s = (ss, s2, s3) = (x , y , z) = (E ,N,H)

I In the analysis of spatial data the distance between the data points is very
important

I In this course, focus only on Euclidean distances: 2D distance between points s
and s′ is

d(s, s′) =
√

(si1 − s′i1)
2 + (si2 − s′i2)

2

I Many other types of distances, e.g.
great-circle distance
azimuth distance
travel distance from point to point
time needed to get from point to point

I Latitude-longitude coordinates needed to be transformed to grid coordinates in
some 2D projection
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Function spDists() from package sp useful to transform distances from
longitude-latitude system to Euclidean system
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Elevation Data

I Data (zi , si ), i = 1, . . . , 52
I zi is the surface elevation with one unit corresponding to 10 feet (∼ 3.05 meters)

of elevation
I si locations within square A
I Unit distance is 50 feet (∼ 15.24 meters)
I Target: construction of a continuous elevation map for the whole square region
I Source: Davis (1972). Statistics and Data Analysis in Geology. Wiley
I Available in geoR as the elevation data
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Elevation Data
]

> install.packages("geoR")
> library("geoR")
> data(elevation)
> help(elevation)
> points(elevation)
> help(points.geodata)
> points(elevation, cex.min=1, cex.max=4, col="gray")
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Elevation Data

> summary(elevation)
$n
[1] 52

$coords.summary
x y
min 0.2 0.0
max 6.3 6.2

$distances.summary
min max
0.200000 8.275869

$data.summary
Min. 1st Qu. Median Mean 3rd Qu. Max.
690.0 787.5 830.0 827.1 873.0 960.0

attr(,"class")
[1] "summary.geodata"
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Elevation Data

> plot(elevation, lowess=T)
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geodata Objects

I geodata is a list with obligatory and optional components
I Obligatory components:

coords matrix with 2D coordinates
data vector with measurements (responses) at the locations corresponding to coords

I Optional components:
borders matrix with coordinates defining the boundary of the study area
covariate matrix with covariates
...
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geodata Objects

I Swiss Jura
I ASCII file jura.dat

> jura <- read.geodata("jura.dat", header = T,data.col=3:11, skip = 22)
> names(jura)
$coords
[1] "X" "Y"

$data
[1] "Rock" "Land" "Cd" "Cu" "Pb" "Co"
[7] "Cr" "Ni" "Zn"
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Spatial structure

I The observations are suspected of having a coherent spatial structure, the
characterization of which may be important.

I Spatial variations can be decomposed into two components:

Data = large-scale variation + small-scale variation
z(s) = µ(s) + ε(s)

I Example Piezometric head measurements taken at the Wolfcamp Aquifer, Texas,
USA.
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Exploring the large scale variation

Exploration of the large scale variation can be considered as a usual regression
problem. Available tools include

I simple interpolation
I trend surface analysis: linear regression with spatial coordinates (or, e.g., their

polynomial functions, as well as other attributes measured at observation points)
acting as covariates

I spatial moving averages (including nearest neighbour methods)
I non parametric regression, as wih loess

Quite similar to trends in times series. Not further detailed in this class
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Exploring spatial dependence

Tobler’s first law of geographya

a(Tobler, 1970). Economic Geography, 46(20):234-240

“Everything is related to everything else, but near things are more related than distant
things”
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Variogram cloud

Semi squared variation:

γ∗ij =
(z(si )− z(sj ))

2

2
dij = ‖si − sj‖
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Variogram cloud

Semi squared variation:

γ∗ij =
(z(si )− z(sj ))

2

2
dij = ‖si − sj‖
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The variogram cloud

I Shows the variation within all pairs of points as a function of their separation
distance;

I Too many points: hard to interpret;
I Allows the identification of outliers; Shows which point-pairs do not fit the general

pattern (outliers)
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The empirical variogram

I To summarize the variogram cloud, we group the distances into lags (separation
bins, like a histogram)

I We then compute the average of the semi squared variation of all the point-pairs
in the bin. This defines the semi-variance

I The empirical variogram is the graph of semi-variance as a function of distance
lags:

γ̂(dk ) =
1

2nk

∑
i,j;dij'dk

(Z (si )− Z (sj ))
2

where nk is the number of point pairs separated by distance dk (up to some
tolerance)
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The empirical variogram

γ̂(dk ) =
1

2nk

∑
i,j;dij'dk

(Z (si )− Z (sj ))
2
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Defining the bins

Some practical considerations for defining the bins:
I Each bin should have enough points to give an accurate estimate of the

semi-variance; otherwise the variogram is erratic;
I If a bin is too wide, we do not represent the variation of the (theoretical) variogram

with the distance
I The largest separation should not exceed half the longest separation in the

dataset;
I Local spatial dependence which is the most interesting, not long distance values
I All computer programs that compute variograms use some defaults for the largest

separation and number of bins; variog uses the longest separation, and divides
this into 13 equal-width bins.
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Defining the bins

> wolf.bin<-variog(wolfcamp,option="bin",bin.cloud=TRUE)
> plot(wolf.bin,bin.cloud=TRUE)
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Precipitation in Switzerland
I We consider one daily cumulative rainfall data from the Swiss meteorological

service measured on May 8, 1986
I First precipitation event after Chernobyl’s radioactive cloud traveled across Europe

(dataset sic.100 in the geoR package).
I As daily rainfall is a good indicator of the effect of radioactive fallout, these data

allowed contamination risk to be evaluated after the Chernobyl disaster (26th
April, 1986)
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Precipitation in Switzerland

> data(SIC)
> points(sic.100, borders = sic.borders, pch=20, cex.max=3)
> max.dist <- 220
> sic.bin<-variog(sic.100,option="bin",estimator.type="classical",

max.dist=max.dist)
> plot(sic.bin$u,sic.bin$v,pch=20,col=1,ylab="semi-variogram",xlab=’h’)
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Some properties of the empirical variogram

γ̂(dk ) =
1

2nk

∑
i,j;dij'dk

(Z (si )− Z (sj ))
2

I Positive
I γ̂(0) = 0, but γ̂(ε) > 0 when ε > 0
I In general, increasing function

I The empirical variogram is the most popular tool for characterizing the spatial
variability

I Need theoretical models for doing optimal spatial interpolation, the kriging
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Features of the empirical variogram
Main features characterizing the spatial dependence (only qualitatively at this stage)
Sill: maximum semi-variance represents variability in the absence of spatial

dependence
Range: separation between point-pairs at which the sill is reached distance at which there

is no evidence of spatial dependence
Nugget: semi-variance as the separation approaches zero represents variability at a point

that can’t be explained by spatial structure
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Empirical variograms and regualrity

From top to bottom, and from left to right: micrgravity; depth of a geological layer (Paris basin); gold
grade in a gold mine (Salsigne, France); log-permeanility (Paris basin); From Chilès et Delfiner
(2012).
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Anisotropy

I We have been considering spatial dependence as if it is the same in all directions
from a point (isotropic or omnidirectional).

I Not always true! Variation may depend on direction, not just distance. Examples:
prevailing winds; pollution in a valley; horizontal vs. vertical, ....

I We will now refer to the separation vector; up till now this has just meant distance,
but now it includes direction
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Anisotropy
I To detect anisotropy, one computes variograms along different distance
I We see if they are different
I No formal statistics tests!

Piezometric head measurements 
 at the Wolfcamp Aquifer (Texas, USA)
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Anisotropy
> wolf.bin4<-variog4(wolfcamp)
> plot(wolf.bin4)
> title(main=’Four directions:\n N-S, NE-SW, E-W e SE-NW’,cex.main=2)

Plot of specific directions: NE-SW, (45o degrees, solid line); E-W (90o degrees, dashed
line)
> wolf.bin4<-variog(wolfcamp,option="bin", direction=pi/4)
> wolf.bin2<-variog(wolfcamp,option="bin", direction=pi/2)
> plot(wolf.bin4,type=’l’)
> lines(wolf.bin2$u,wolf.bin2$v,lty=2)
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Empirical variogram and Curvilinear coordinates

From Chilès et Delfiner (2012).
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Empirical variogram and gradient
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Empirical variogram and factors
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Modelling spatial variation as a random field I

I Idea: The observed values are only one of many possible realizations of a random
field (also called a “stochastic” process)

I There is only one reality (which is sampled), but it is one realization of a process
that could have produced many realities

I This random process is spatially auto-correlated, so that values are somewhat
dependent.

I The (non independent) random values {Z (s), s ∈ D} define a random field.
I A probability model governs the random field; this is where we can model spatial

dependence.
I The values {z(s), s ∈ D} are one realization of the random field Z (·)
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Stationarity

Stationarity
”Probabilities are translation invariant, i.e. they are identical for all s ∈ D.”
In most cases, it is sufficient to assume 2nd order stationarity

Second order Stationarity
”Means and (co-)variances are identical for all s ∈ D.”

E[Z (s + h)] = E[Z (s)] = µ

cov(Z (s),Z (s + h)) = C(h)

for all s and h in D.

The autocovariance depends on the separation vector h only

118 / 175



TS Regression for TS Correlograms ARMA Models Forecasting Spatial Data Variograms Kriging

Covariance function

Covariance function

C(h) = cov(Z (s),Z (s + h))

We drop the prefix auto-

I C(0) = σ2

I C(h) = C(−h)
I C(h) can be negative, but |C(h)| ≤ C(0)
I C(h) must be a special function, called positive definite function. Thus, one

always has

Var

( n∑
i=1

λi Z (si )

)
=

n∑
i=1

n∑
j=1

λiλj C(si − sj ) ≥ 0

for all n, all s1, . . . , sn and all λ1, . . . , λn.
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Some valid covariance functions

I Spherical : C(h) =

 σ2(1− 3
2
|h|
a

+
1
2
|h|3

a3

)
, if 0 ≤ |h| ≤ a

0, if |h| ≥ a

I Exponential : C(h) = σ2 exp(−|h|/a), a > 0
I Matérn :C(h) = σ2(α|h|)νKν(α|h|), ν, α > 0
I Gaussian : C(h) = σ2 exp(−|h|2/a), a > 0
I ...
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Examples

Colza cultivation in Lombardy Stationary random field

the moon’s surface Anisotropic random field
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Exponential covariance
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Exponential covariance
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Exponential covariance
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Exponential covariance
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Exponential covariance
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Exponential covariance
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Spherical covariance
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Spherical covariance
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Gaussian covariance
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Gaussian covariance
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Matérn Covariance
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Matérn Covariance
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Bessel Covariance
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Bessel Covariance
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Theoretical variogram

Question
What is the relationship between empirical variogram and covariance functions?

Answer
Theoretical variograms

I Recall the empirical variogram

γ̂(dk ) =
1

2nk

∑
i,j;dij'dk

(Z (si )− Z (sj ))
2

I We move from
Data → Mathematics

I Hence, we move from
”Average” → ”Expectation”
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Theoretical variogram

I When the semi-variance of variations,

Var(Z (s)− Z (s′))
2

depends only on the separation vector h = s − s′ , we define the (theoretical)
semi-variogram

γ(h) =
Var(Z (s)− Z (s′))

2
.

I The theoretical variogram cannot be any function
I A function γ(h) must be conditionally negative definite to be a valid variogram.
I It can be unbounded: the function

γ(h) = a.‖h‖α, 0 < α < 2

is a valid variogram.
I When γ(h) is bounded, the following relationship between variograms and

covariance functions hold:

γ(h) = C(0)− C(h).
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Properties of the variogram

I γ(h) ≥ 0; γ(0) = 0
I γ(−h) = γ(h)
I If lim|h|→∞ γ(h) = S < +∞, then Z (·) is second order stationary and

γ(h) = C(0)− C(h).

I It is conditionally negative definite, i.e.

n∑
i=1

λi = 0
∑

ij

λiλjγ(si − sj ) ≤ 0,

for all n, all s1, . . . , sn, and all λ1, . . . , λn

I The empirical variogram is an unbiased estimator of the theoretical variogram
I Regularity of the variogram at h = 0⇐⇒ regularity of the random field Z (·)

Twice differentiable variogram at h = 0⇐⇒ differentiability of Z (·)
Continuous variogram at h = 0⇐⇒ continuous Z (·)
Discontinuous variogram at h = 0 (i.e. nugget effect)⇐⇒ discontinuous Z (·)
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Properties of the variogram
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Simulated examples
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Examples of variograms

Nugget model (aka white noise) Exponential model

γ(h) =
{

0, h = 0
σ2 h 6= 0 γ(h) = σ2{1− exp {−h/φ}}

σ2 = 1 σ2 = 1, φ = 0.3
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Other examples of variograms

Gaussian model Wave model
γ(h) = σ2{1− exp{− h2

φ
}} γ(h) = σ2{1− φ

h sin( h
φ
)}

σ2 = 1, φ = 0.3 σ2 = 1, φ = 0.3
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Simulated examples
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Variogram models with the same ”practical” range
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An example of simulation with R

The function grf() generates simulations of Gaussian random fields for given
variogram (covariance) parameters.

I Define the number of spatial locations in each simulations. The locations are
taken at random on the unit square [0, 1]2.
> n<-100

I Define the model (here the exponential model). See the help of the
cov.spatial function for further details.
> cov.model<-"exp"

I Define σ2 (partial sill) and φ range parameter.
> cov.pars <- c(1, .25)

I Do the simulations
> mysim <- grf(n = n,cov.model= cov.model,cov.pars = cov.pars)

I Display the simulated locations and values
> points(mysim)
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An example of simulation with R
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An example of simulation with R

I Compare the empirical vs theoretical variogram

> plot(mysim)
> abline(v=max(dist(mysim$coords))/2)
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An example of simulation with R

I An example on a regular grid

> n<-441
> mysim2 <- grf(n=n, grid = "reg",cov.pars = cov.pars, cov.model = cov.model)
> image(mysim2)
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Variogram analysis and model fitting

I For prediction we need a variogram function, that will be used at any possible
distance

I Hence, we need a theoretical variogram, estimated using the empirical variogram
I But remember: theoretical variograms are special functions (cond. neg. definite)
I General approach: first choose a valid variogram among the possible ones
I Then estimate the parameters that best fit the theoretical variogram to the

empirical one
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Estimation methods

Weighted least squares
Find the parameters that minimize

K∑
k=1

N(hk )

γ2(hk ; θ)
{γ̂(hk )− γ(hk ; θ)}2

where
I γ(h; theta) is a variogram function with parameters θ
I γ̂(hk ) is the empirical variogram
I both are computed at distances hk , with k = 1, . . . ,K

I More emphasize at short distances
I Most popular method
I Quite robust results

Other methods: maximum likelihood; composite likelihood, ...

150 / 175



TS Regression for TS Correlograms ARMA Models Forecasting Spatial Data Variograms Kriging

Example: Switzerland data

> data(SIC)
> max.dist<-220
> sic.bin<-variog(sic.100,max.dist=max.dist)
> plot(sic.bin)
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Example: Switzerland data

I We need starting values for the sill and the range
> ini<-c(15000,50)

I We choose the model
> cov.model <- ’exp’

I we fit the model using two different criteria
> wls.fit <- variofit(sic.bin, ini = ini, cov.model=cov.model,weights="cressie",

fix.nugget=TRUE)
> ml.fit <- likfit(sic.100, ini = ini, cov.model=cov.model,fix.nugget=TRUE)
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Example: Switzerland data

I We plot the fitted theoretical variogram and we contrast it with the empirical one

> plot(sic.bin)
> lines(wls.fit,lty=1)
> lines(ml.fit,lty=2)
> legend("bottomright", legend=c("WLS","ML"), lty=c(1,2))

●

●

●

● ●
●

●
●

●

●

●

●
●

0 50 100 150 200

0
50

00
10

00
0

15
00

0
20

00
0

distance

se
m

iv
ar

ia
nc

e

WLS
ML

153 / 175



TS Regression for TS Correlograms ARMA Models Forecasting Spatial Data Variograms Kriging

What sample size to fit a variogram model ?

I Can’t use non-spatial formulas for sample size, because spatial samples are
correlated, and each sample is used multiple times in the variogram estimate

I Stochastic simulation from an assumed random field with a known variogram
suggests:

< 50 points: not at all reliable
100 to 150 points: more or less acceptable
> 250 points: almost certaintly reliable

I This is very worrying for many environmental datasets (soil cores, vegetation
plots, ...) especially from short-term fieldwork, where sample sizes of 40 - 60
observations are typical !
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Spatial prediction

Spatial prediction from point samples is one of the main practical applications of
geostatistics

I Objective: we know the value of some attribute at some observation locations, but
we need to know it at an unsampled site. Our prediction at a site s will be denoted
by Ẑ (s).

I Prediction can be at:
Selected points of particular interest;
All points on a grid; the result is a map of the spatial field at the grid resolution
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Spatial prediction: Model-based or not?

I A predictor is called model-based or geostatistical if it requires a model of spatial
structure.

I The most common is Kriging; the geostatistical basis is the variogram model
I Otherwise it is called non-parametric and makes no assumption about spatial

dependence
An example is inverse-distance weighted average
Another example is local smoother such as loess()
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What is kriging ?

I Kriging is a spatial prediction algorithm based on a continuous model of stochastic
spatial variation.

I Kriging = prediction of the small scale random component process, using the
variogram

I Different types of kriging exist, which pertains to the assumptions about the large
scale component (mean structure) of the spatial model

E []Z (s)] = µ(s)

I Taxonomy
Simple kriging: The large scale component is a known constant, i.e.

E [Z (s)] = µ

.
Ordinary kriging: The large scale component is unkown but constant
Universal kriging: The large scale component is unknown but a linear combination of
known functions of locations

µ(s) =
p∑

i=0

βi fi (s).

where the parameters β1, . . . , βp have to be estimated.
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What is kriging ?
I Predicts at any location using a weighted average of measured values

Ẑ (s) = λ1z(s1) + · · ·+ λnz(sn)

I How to choose the weights ?
1. We impose the prediction to be unbiased
2. The weights are chosen in order to minimize the MSE at each location (in this sense it is

a optimal predictor)
MSE(s) = E [Z (s)− Ẑ (s)]2

I Kriging weights (λ1, . . . , λn) are derived as solution of the kriging linear system of
equations

I As part of the solution of the kriging system we get the MSE of each prediction

Kriging weights
They depend on:

I Variogram model and its parameters
I The spatial pattern of samples points
I The location of the prediction point w.r.t. sample points
I They do not depend on the values z(si )
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Toy example (1)

Top: No spatial effect. Middle: Spherical(a = 2L). Bottom: Gaussien (a = 1.5L
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Toy example (2)

Spherical(a = 2L)
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Illustration: variograms

Left: Nugget + Spherical; Right: Gaussian very short range + Spherical
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Illustration: Kriging

Ni est pep +sph
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Isatis
donnees brutes/200 par 200
- Variable #1 : Ni est gaus + sph

Denis Allard

Jan 10 2002   15:10:28

Jura_Suisse

 1000. 

 1000. 

 2000. 

 2000. 

 3000. 

 3000. 

 4000. 

 4000. 

X (Meter)

X (Meter)

 1000.  1000. 

 2000.  2000. 

 3000.  3000. 

 4000.  4000. 

 5000.  5000. 

Y
 
(
M
e
t
e
r
)

Y
 
(
M
e
t
e
r
)

>=50
48
46
44
42
40
38
36
34
32
30
28
26
24
22
20
18
16
14
12
10
8
6
4
2
<0

N/A

Left: Nugget + Spherical; Right: Gaussian very short range + Spherical
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Illustrations: Kriging variance

Ni std pep +sph
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Illustration of Ordinary Kriging
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How do we use Kriging in practice ?

1. Sample, preferably at different resolutions: stratified random sampling

2. Calculate the experimental variogram

3. Model the variogram with one or more variogram models

4. Apply the kriging system of equations, with the variogram model of spatial
dependence, at each point to be predicted

5. Predictions are often at each point on a regular grid (e.g. a raster map)

6. As part of the solution of the kriging system, calculate the variance of each
prediction; this is based only on the sample point locations, not their data values.

7. Display maps of the predictions and their mean squared errors.

Ready-to-use functions from packages gstat, geoR and RandomFields
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Example: daily rainfall in Switzerland

1. Sample, preferably at different resolutions
> data(SIC)

2. Calculate the experimental variogram
> data(SIC)
> max.dist<-220
> sic.bin<-variog(sic.100,max.dist=max.dist)

3. Model the variogram with one or more variogram models
> cov.model<-"exp"
> ini<-c(15000,50)
> wls <- variofit(sic.bin, ini = ini,cov.model=cov.model,

weights="cressie",fix.nugget=TRUE)

4. Apply the kriging system of equations, with the variogram model of spatial
dependence, at each point to be predicted. Predictions are often at each point on
a regular grid (e.g. a raster map).
> ngridx<-100
> ngridy<-100
> xgrid<-seq(min(sic.borders[,1]),max(sic.borders[,1]),l=ngridx)
> ygrid<-seq(min(sic.borders[,2]),max(sic.borders[,2]),l=ngridy)
> pred.grid <- expand.grid(xgrid,ygrid)
> krige.par<-krige.control(type.krige=’ok’,cov.pars=wls$cov.pars,

cov.model=wls$cov.model)
> ksic<-krige.conv(sic.100,locations=pred.grid,krige=krige.par)
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Example: daily rainfall in Switzerland

5. As part of the solution of the kriging system, calculate the variance of each
prediction; this is based only on the sample point locations, not their data values.

6. Display maps of the predictions and their (square root) mean squared errors.
> image(ksic,main ="Prediction")
> contour(ksic,add=TRUE)
> points(sic.100,pch=20,add=TRUE)
> se<-sqrt(ksic$krige.var)
> image(ksic, main ="Square root of MSE")
> contour(ksic, val=se,add=TRUE)
> points(sic.100,pch=20,add=TRUE)
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Example: daily rainfall in Switzerland
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Use of the prediction and the MSE

I One of the major advantages of kriging is that it produces both a prediction Ẑ (s)
and its mean squared error MSE(s).

I This can be used to construct prediction intervals around the predicted value
I The two-sided interval which has (approximately) probability (1− α) of containing

the unboserved value Z (s) is:

[Ẑ (s)− q1−α/2

√
MSE(s), Ẑ (s) + q1−α/2

√
MSE(s)

q1−α/2 quantile of the standard Gaussian distribution.
I For instance if you want a prediction interval which has (approximately) probability

0.95 choose
[Ẑ (s)− 1.96

√
MSE(s), Ẑ (s) + 1.96

√
MSE(s)
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Cross-validation

The underlying idea in cross-validation is to put aside each observation in turn and use
kriging to predict its value using the other observations without again estimating the
variogram model.

I For each site we then have an observed value z(si ) and a predicted value Ẑ (si ).
I We then compute

BIAS = 1/n
n∑

i=1

(z(si − Ẑ (si ))),

RMSE = 1/n
n∑

i=1

(z(si − Ẑ (si ))
2,

and

CV =
1
n

n∑
i=1

(z(si )− Ẑ (si ))
2

MSE(si )
,

I If the variogram model is correctly identified and well-estimated, then the BIAS
should be close to 0 and CV should be close to 1.

I Residuals z(si )− Ẑ (si ) can be also analyzed !
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Cross-validation in R
> xv <- xvalid(sic.100, model = wls)
> cv<-mean(xv$std.errorˆ2)
> plot(xv)
> print(cv)
[1] 0.7233951
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Comparing two variogram models

I For the sake of comparison, consider and fit a Gaussian model
> cov.model<-"gauss"
> ini<-c(15000,30)
> wls.gauss <- variofit(sic.bin, ini = ini,cov.model=cov.model,

weights="cressie",fix.nugget=TRUE)
> xv <- xvalid(sic.100, model = wls.gauss)
> cv<-mean(xv$std.errorˆ2)
> print(cv)
[1] 3.730225
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Comparing two variogram models
I We compare the fitting

> plot(sic.bin)
> lines(wls.fit,lwd=1.8)
> lines(wls.gauss,lty=3,lwd=1.8s)
> legend("bottomright",legend=c("Exponential","Gaussian"),

lty=c(1,3),lwd=1.8)
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Comparing two variogram models
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Thank you very much for your attention and your
willingness
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