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Piecewise-deterministic Markov Processes
for Spatio-temporal Population Dynamics

7.1. Introduction

7.1.1. Models for Population Dynamics

Population dynamics is the study of the structure, the pattern and the biological and
environmental drivers of populations. Studies of population dynamics are carried out
at various scales, from the microscopic scale to the global scale, and are particularly
relevant in ecology and epidemiology.

Numerous and diverse modeling approaches have been proposed to
mathematically represent population dynamics. These modeling approaches are
based on diverse mathematical tools adapted to (i) different resolutions at which the
population dynamics are considered (e.g. individuals, groups, presence in quadrats,
and numbers of individuals in districts), and (ii) different levels of perceptions (e.g.
the population itself, its averaged characteristics, or more generally aggregated
functions of the population patterns). For instance, ODEs were used to describe the
average growth of populations [TUR 03, chap.3], branching processes were used to
model the growth and adaptation of populations [MÉL 11], PDEs and
integrodifferential equations were used to represent the spatio-temporal intensity of
populations with local and non-local dispersal capacities [ROQ 10, ALF 13], SDEs
were used to model trajectories of individuals [GLO 15], temporal point processes
were used to build birth-death models [CHA 06], spatio-temporal point processes
were used to model the temporal evolution of the spatial pattern of individuals
forming a population [SOU 11], stochastic Markovian areal processes were used to
model large-scale dynamics [SOU 09b], regressions (eventually including
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auto-regressive components) were used to take into account the effect of
environmental variables on population characteristics [BOR 17].

Suppose that we are interested in fitting a spatio-temporal population dynamic
model to data. There is, like in many other application fields, a trade-off between
model realism and estimation complexity. For example, fitting a population dynamic
model essentially constructed from a partial differential equation containing a few
parameters [SOU 14b] is generally easier than fitting a (more flexible and realistic)
hierarchical stochastic spatio-temporal Markovian model including a few parameters
but numerous latent variables [SOU 09b]. In this example, two extreme cases are
considered: (i) a model with a deterministic behavior and a few degrees of freedom,
which may yield poor goodness-of-fit, and (ii) a model with a stochastic behavior and
lots of degrees of freedom, which may induce identifiability issues. Intermediate
models are required to achieve rapid, realistic and consistent inferences.
Spatio-temporal PDMPs can play this role.

7.1.2. Spatio-temporal PDMP for Population Dynamics

Spatio-temporal PDMPs can be occasionally encountered in the theoretical and
quantitative population dynamic literature, but these models are generally not called
PDMPs. Here, we give three examples of spatio-temporal PDMPs built at three
different levels: the population, the metapopulation (which is a set of populations)
and the individual. These processes are illustrated in Figure 8.1.

The coalescing colony model [SHI 95], which was developed to represent stratified
diffusion in biological invasions, is a PDMP. Stratified diffusion typically consists
of two components: neighborhood diffusion and long-distance dispersal. The former
component is modeled in the coalescing colony model by a deterministic expansion of
colonies (this is the flow); The latter component is modeled by the random Markovian
generation of new colonies away from the existing colonies (this is the jump process).
The coalescing colony model was developed to investigate the impact of stratified
dispersal on the rate of expansion of populations with several propagation modes.

The metapopulation epidemic model proposed in [SOU 09a] is another example
of spatio-temporal PDMP representing a population dynamic. Here, the population
of interest is a pathogen population whose hosts are spread in a set of disconnected
areas, called host patches. In this model, host patches can be either healthy or infected
by the pathogen; When a host patch is infected, the local pathogen population grows
in a deterministic way (this is the flow); Infected patches can infect distant healthy
patches in a stochastic manner (this is the jump process; the pathogen jumps from
infected patches to healthy patches). The metapopulation epidemic model was fitted
to presence/absence data of the pathogen in host patches at the end of successive
epidemic seasons.
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PDMPs can also provide concise mathematical descriptions of trajectories of
individuals. Examples of such models are given in [CAI 17, chap. 1] under the term
velocity-jump models. These models were used to carry out a statistical analysis of
the expansion of the cane toad using data obtained by monitoring successive daily
locations of a sample of toads. In the simplest model, each individual randomly
alternates between encamped and running modes, whose durations are independently
and exponentially distributed (this is the jump process). When an individual jumps
towards a new running mode, the direction is randomly drawn in a specified
distribution. When an individual is running, its movement is deterministic and linear
given the random direction of the movement (this is the flow).
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Figure 7.1: Illustrations of the flows and jumps for the coalescing colony model (left),
the metapopulation epidemic model (center) and the simple velocity-jump model.

7.1.3. Chapter Contents

In the following, we describe three contexts where PDMPs arise for describing
population dynamics at the population level, the metapopulation level and the
individual level, respectively. Section 8.2 shows how the coalescing colony model
was built and how it can be formulated as a PDMP. It also introduces a
spatio-temporal PDMP based on a reaction-diffusion equation that could be used to
model the dynamic of an invading pathogen (e.g. Xylella fastidiosa in Corsica) that
might have been introduced at multiple points in space and time. Section 8.3 presents
the metapopulation epidemic model mentioned above and gives details about how it
was fitted to data. Section 8.4 describes a theoretical framework for building
trajectory models with jumps, including PDMPs.

7.2. Stratified Dispersal Models

In this section, we briefly review some mathematical models describing
spatio-temporal dynamics of populations. We are especially interested in the
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dispersal modes incorporated in these models. Thus, we will consider some
reaction-diffusion models including only short-distance dispersal processes, and
coalescing colony models including both short-distance and long-distance dispersal
processes. We will show how the latter model can be formulated as a PDMP. Finally
we will present an original reaction-diffusion-based PDMP describing invasion
dynamics with multiple introductions.

7.2.1. Reaction-diffusion Equations for Modeling Short-distance
Dispersal

There are typically three stages arising successively during a biological invasion
process: (1) establishment where a few individuals arrive and succeed to settle, (2)
linear expansion when the invasion occurs by neighborhood diffusion as in this
section or biphasic expansion when the invasion is driven by stratified diffusion (see
Section 8.2.2), and (3) concentration of the invasive species in the area of invasion
until saturation [COL 04, RIC 00]. When one aims to model dispersal phenomena
such as biological invasions, reaction-diffusion equations are frequently used and
have been exploited in many domains, especially in medicine, ecology and
epidemiology [GAT 96, ROQ 13, MUR 96]. Reaction-diffusion equations are partial
differential equations of parabolic type [EVA 98]. Here, we describe some
reaction-diffusion equations, in which dispersal is considered as a random diffusion
process.

Random diffusion at the population level can be derived from random walks at the
individual level. Random walks are often used to describe invasions by species that
move via short-distance dispersal. Basic random walk models describe the path of an
individual moving in a spatial domain via a succession of random steps. Typically, in a
unidimensional space, as illustrated in Figure 8.2, the individual located at x can move
to the left and reach x− d with probability PL, move to the right and reach x+ d with
probability PR or stay at the same place with probability PS = 1 − PL − PR. Such
a microscopic and individual-based description of movements can be used to obtain
diffusion equations at the population level [ROQ 13, SHI 97, SKE 51]. In particular,
the 1D random walk without directional bias and with constant and non-persistant
increments leads to the following form of diffusion equation: ∂u∂t = D ∂2u

∂x2 , where u is
the density of population.

In 1937, Fisher analyzed the rate of advance of advantageous genes with a PDE
[FIS 37], which has been generalized into:

∂u

∂t
= D

∂2u

∂x2
u+ u(r − bu)︸ ︷︷ ︸

f(u)

, t ≥ 0 [7.1]
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Figure 7.2: Unidimensional random walk model.

where u = u(t, x) is the frequency of the advantageous gene at time t and spatial
location x in a unidimensional space; D > 0 is the coefficient measuring the rate of
dispersal; r stands for the intrinsic growth rate of the species; and b corresponds to the
coefficient measuring the effect of intra-specific competition; f(u) is the population
growth term.

In the line with Fisher’s work, Skellam [SKE 51] proposed two-dimensional
PDEs for describing population dynamics. The so-called Skellam model, in
particular, allowed him to theoretically study population spread with Malthusian
growth. This model incorporates two terms, namely the population dispersal term and
the population growth term, and assumes that there is no intra-specific competition:

∂u

∂t
= D∆u+ ur , t ≥ 0 [7.2]

Figure 8.3 presents the solution of Equation [8.2] in a two-dimensional space, for
specific values of parameters, initial conditions and boundary conditions.

Positive wavefront type-solutions exist for Equation [8.2]. One simplified form of
a traveling wave (in a unidimensional space) is a function of the form:

u(t, x) = U(x− ct)

where c ∈ R is the speed of the front U ∈ C2(R). Note that a traveling wavefront can
be defined not only when t > 0 but also for any t ∈ R.

Skellam showed that the rate of spread at the front of the population range
asymptotically approaches c0 = 2

√
rD when a small population is initially

introduced at the origin. Furthermore, Luther [LUT 06] and Kolmogorov et al.
[KOL 37] were the first to prove the existence of wavefront type-solutions for a
diffusion equation with a logistic growth term f(u) = ru(1 − u) (Fisher-KPP).
Kolmogorov et al. showed that some initial distributions converge asymptotically to a
traveling wave propagating to the right with a well defined, constant speed
c = 2

√
rD. When the growth term includes an Allee effect as follows:

f(u) = ru(1 − u)(u − θ), where θ ∈]0, 1[ is the Allee effect parameter, then there
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Figure 7.3: Numerical solution u(t,x) of Skellam model [8.2] in a bi-dimensional
space (where x = (x, y)) with Neumann boundary conditions, at time 0 (top left), 3
(top right), 6 (bottom left) and 12 (bottom right). The dispersal coefficient and the
intrinsic growth rate were fixed at (D, r) = (5× 10−3, 0.5). The initial condition

was u(0,x) = 0.1 exp(−(10‖x− x̃0‖)2), where x̃0 = (x̃0, ỹ0) = (0.8, 0.8).

exists a unique positive wavefront-type solution with lim
x−→−∞

U = 1, lim
x−→+∞

U = 0.

In addition, the speed of the front is [HAD 75, ROT 81, LEW 93]:

c =
√

2rD(
1

2
− θ) [7.3]

7.2.2. Stratified Diffusion

The models introduced above are generally not adapted to describe the dynamics
of populations that expand their range not only by neighborhood dispersal but also by
long-distance dispersal, which can corresponds to rare but significant events. The term
stratified diffusion was used to describe this twofold dispersal process [HEN 89].

Shigesada et al. [SHI 95] proposed stratified diffusion models (derived from
Skellam’s equation for neighborhood dispersal) and studied their properties. In theses
models, the population of interest is in a homogeneous environment and expands its
range continuously in time for neighborhood dispersal and at discrete random times
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for long-distance dispersal (i.e. colonization events). Two frameworks were
considered: (i) the nuclei of colonization created by long-distance migrants are
located far enough to assume that their ranges do not overlap, mutually and with the
mother colony, for a long time; (ii) the nuclei of colonization created by
long-distance migrants merge with the mother colony as soon as they touch the
mother colony (because of their own expansion and the expansion of the mother
colony), but the merging of two nuclei of colonization is neglected. Framework (ii)
led to the coalescing colony model [SHI 95] that we revisit in the next section by
incorporating an Allee effect.

7.2.3. Coalescing Colony Model with Allee effect

Model description and properties

Suppose that a few individuals invade a given location of the 2D Euclidean space
at t = 0, succeed to settle, and form a so-called mother colony with a disk shape
whose radius increases at a constant rate c by neighborhood diffusion (the
establishment phase is neglected). By setting c =

√
2rD( 1

2 − θ), the expansion of
the mother colony is an approximation of the population expansion governed by the
following PDE incorporating an Allee effect (see Equation [8.3]):

∂u

∂t
= D∆u+ ru(1− u)(u− θ),

given adequate initial conditions.

The expansion of the mother colony is augmented by long-distance dispersal
events generating child colonies. More precisely, the mother colony releases long-
distance dispersers that settle at a distance L > 0 of the border of the mother colony
and produce child colonies. The rate of generation of child colonies, say λ̃, is assumed
to depend on the current radius z of the mother colony. Typically, λ̃ is a non-decreasing
function of z. Shigesada et al. considered three cases:

• λ̃(z) = λ0, i.e. the mother colony produces long-distance migrants at a constant
rate;

• λ̃(z) = λ1z, i.e. the mother colony produces long-distance migrants at a time-
varying rate proportional to its perimeter;

• λ̃(z) = λ2z
2, i.e. the mother colony produces long-distance migrants at a time-

varying rate proportional to its area.

Additionally, every child colony expands its range circularly at the constant rate c, like
the mother colony, but do not release long-distance migrants. When the mother colony
and a child colony collide, the area covered by the child colony is instantaneously
assigned to the mother colony, which remains a disk with same center but with a
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larger radius. Collisions between child colonies are neglected. An illustration of this
process is provided in Figure 8.4.

Figure 7.4: Illustration for the coalescing colony model. First, from t = 0, the range of the
mother colony (disks) expands by short-distance dispersal with a constant rate c (left). Then,
the mother colony generates long-distance dispersers to the distance L from its border at the
rate λ̃(z(t)). The child colonies (circles) expands their range at the rate c until they collides

with the mother colony after a period of duration L
2c

. Finally (right), at the time of coalescence,
the range of the blue including the green colony is immediately reshaped into a circular pattern

while the total area of both colonies remains the same.

The coalescing colony model is characterized by the following properties
[SHI 95]. The expectation of the number of child colonies having radius s at time t,
say n(s, t), satisfies the following von Foerster equation and initial / boundary
conditions:

∂n
∂t (s, t) + c∂n∂s (s, t) = 0 for s ∈ (0, s∗(t))

n(s, 0) = 0

cn(0, t) = λ̃(z(t)),

[7.4]

where z(t) is the radius of the mother colony at time t and s∗(t) is the radius of the
first child colony coalescing with the mother colony immediately before the collision.
Equation [8.4] has an explicit solution:

n(s, t) =
1

c
λ̃
(
z
(
t− s

c

))
1{ct≥s>0}(s, t).

The area πz(t)2 of the mother colony satisfies, before and after collision with a
child colony:

d

dt
πz2 =

{
2πzc for t ∈ (0, t1)

2πzc+ πs∗2n(s∗, t)(c− ds∗

dt ) for t ≥ t1,
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where t1 = L
2c is the time when the first mother-child collision occurs.

Finally, z(t) and s∗(t) are linked by the following equation when t ≥ t1:

L = z(t)− z
(
t− s∗(t)

c

)
+ s∗(t),

where t − s∗(t)
c is the time when the collided child colony was at a distance L of the

mother colony (for further details see Shigesada et al. [SHI 95]).

PDMP Formulation of the Coalescing Colony Model with Allee Effect:

The coalescing colony model can be seen as a precursory example of PDMPs
modeling spatio-temporal population dynamics. In this case, the PDMP is the Boolean
process formed by the union of the mother and child colonies:

Xt = B(O, z(t)) ∪
(m(t)⋃
i=1

Ai(t)
)

Ai(t) =

{
B(Oi, si(t)) if d(O,Oi) > z(t) + si(t)

∅ otherwise,

where B(O, z(t)) is the ball with center O and radius z(t) covered by the mother
colony, m(t) is the number of child colonies generated until time t, and B(Oi, si(t))
is the ball with center Oi and radius si(t) covered by child colony i until its collision
with the mother colony, that is to say while z(t) + si(t) < d(O,Oi), and d(·, ·)
is the inter-point Euclidean distance. Between collision times (thereafter called jump
times), the radii of the mother and child colonies grow at the constant speed c given by
Equation [8.3]. We remind, in addition, that the coalescence of two child colonies and
the generation of grandchild colonies by child colonies (i.e. secondary colonizations)
are neglected.

Let Tj be the j-th jump time corresponding to the time of generation of child
colony j. Let τj be the time of collision between the mother colony and child colony
j. Over [Tj , Tj+1), m(t) = j, eventual collisions following the expansion of colonies
occur in a deterministic way and describing the dynamic of Xt is equivalent to
describing the dynamics of the radii z(t) and si(t), i = 1, . . . , j, because the centers
O and Oi are fixed. For t ∈ [0, T1),

z(t) = ct
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and for t ∈ [Tj , Tj+1), j ≥ 1, the radii of the mother and child colonies satisfy:

z(t) =z(Tj) + c(t− Tj)

+

j∑
i=1

[(
si(τ

−
i )2 + z(τ−i )2

)1/2

− z(τ−i )

]
1(t ≥ τi > Tj)

si(t) ={si(Tj) + c(t− Tj)}1(t < τi), ∀i = 1, · · · , j,

where

si(τ
−
i ) =si(Tj) + c(τi − Tj)

z(τ−i ) =z(max{τi−1, Tj}) + c(τi −max{τi−1, Tj})

with the conventions τ0 = 0 and si(t) = 0 when child colony i has merged with the
mother colony. We now give the expression of τi for i such that Tj < τi < Tj+1. Let
t0 = max{τi−1, Tj} be the time of the event (i.e. a collision or the generation of a
child colony) preceeding τi. If a collision occured at t0 and if the resulting
instantaneous growth of the mother colony led the mother colony to touch or overlap
colony i, then τi = t0 (i.e. multiple instantaneous collisions occur). Otherwise, τi
satisfies the following equation:

d(O,Oi) = L+ z(Ti) = z(t0) + c(τi − t0) + si(t0) + c(τi − t0),

whose solution is:

τi = t0 +
d(O,Oi)− z(t0)− si(t0)

2c
. [7.5]

In the case of instantaneous collisions, the fraction in Equation [8.5] is non-positive
(since the sum of radii z(t0) + si(t0) is larger than or equal to d(O,Oi)). Thus,
whatever the event at t0, τi = t0 + max

{
0,
d(O,Oi)− z(t0)− si(t0)

2c

}
t0 = max{τi−1, Tj}.

Therefore, τi can be recursively defined as a function of radii and center locations at
time Tj , which are functions of XTj

To demonstrate thatXt can be viewed as a PDMP, we will now give the expression
of the flow function Φ, the jump rate λ and the jump kernel Q. Let

x = B(Ox, zx) ∪
( Kx⋃
k=1

B(Oxk, sxk)
)
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be in the set X of unions of disjoint balls included in R2 and suppose that k is
ordered such as the sequence of d(Ox, Oxk) increases with k. Note that knowing x is
equivalent to knowing {Ox, zx, Oxk, sxk; k = 1, . . . ,Kx}. Define Φ over X ×R+ as
follows:

Φ(x, t) = B(Ox, φ1(x, t)) ∪

(
Kx⋃
k=1

B(Oxk, φ2(x, t, k))

)
,

with the convention B(Oxk, 0) = ∅ and

φ1(x, t) = zx + ct

+

Kx∑
k=1

[(
(sxk + ct)2 + (φ1(x, τx,k−1) + c(t− τx,k−1))2

)1/2

− (φ1(x, τx,k−1) + c(t− τx,k−1))
]
1(t ≥ τxk)

φ2(x, t, k) = (sxk + ct)1(t < τxk), ∀k = 1, · · · ,Kx

τx0 = 0

τxk = τx,k−1 + max

{
0,
d(Ox, Oxk)− φ1(x, τx,k−1)− φ2(x, τx,k−1, k)

2c

}
∀k = 1, . . . ,Kx.

Thus, Xt is a PDMP with flow function Φ:

Xt =

{
Φ(XTj , t) if t ∈ [Tj , Tj+1)

Uj+1 if t = Tj+1,

where the inter-jump duration Sj+1 = Tj+1 − Tj (with j ≥ 1 and the convention
T0 = 0) has a survival function satisfying:

P (Sj+1 ≥ t) = exp

(
−
∫ t

0

λ(Φ(XTj , v))dv

)
;

the rate function λ : X → R+ satisfies:

λ(x) = λ̃(zx),

with λ̃(zx) = λ1zx for example as proposed in Section 8.2.3; and Uj+1 is drawn from
the jump kernel Q(Φ(XTj , Sj+1), ·) such that:

Uj+1 = Φ(XTj , Sj+1) ∪ B(Onew, 0)

with Onew uniformly drawn on the circle centered around O and radius z(Tj+1) + L.
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7.2.4. A PDMP Based on Reaction-Diffusion for Modeling Invasions with
Multiple Introductions

Section 8.2.1 presented the use of reaction-diffusion equations for modeling
population dynamics with short-distance dispersal and Section 8.2.2 presented the
combination of a jumping process and an approximation of a reaction-diffusion
equation to obtain a model with both short and long-distance dispersal. The latter
model was shown to be a PDMP. Here, we introduce an other spatio-temporal PDMP
based on reaction-diffusion for modeling dynamics with short-distance dispersal only
but with multiple introductions of the species of interest. In this model, the flow
represented by a reaction-diffusion equation with an Allee effect will be
stochastically disrupted at random times to mimic introductions having a limited
extent in space. This model will be used in a future study to describe the dynamics of
the plant-pathogenic bacterium Xylella fastidiosa (Xf) in Corsica. Figure 8.5 shows
the pattern of plants which have been detected as infected by Xf in Corsica between
August 2015 and May 2017. This map displays several clusters of infected plants
with different sizes, which may have been induced by several introductions of the
pathogen in different areas of Corsica and at different times.

Figure 7.5: Pattern of plants which have been detected as infected by Xylella
fastidiosa in Corsica between August 2015 and May 2017.

In what follows, we introduce a candidate model for describing the invasion of
Corsica by Xf and lay some track to estimate the unknown parameters and latent
variables of the model. Assume that u(t, x), which will be used to model the
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probability that a plant located at x ∈ Ω ⊂ R2 is infected at time t, satisfies between
two introductions of the invading species:{

∂u
∂t = D∆u+ bu(u− θ)(1− u) in Ω

∇u.n = 0 on ∂Ω,
[7.6]

where D is the dispersal rate, b the intrinsic growth rate of Xf, and θ ∈]0; 1
2 [ the

reaction threshold in Ω which induces an Allee effect (Ω, in the Xf application, will
be the area covered by the Corsican territory).

The progression of u will be interrupted at each introduction time and
re-initialized. At the first introduction time, i.e. t = τ0, u is initialized as follows:

u0(x) = u(τ0, x) = f(x, x0) in Ω,

where f : Ω 7→ [0, 1] is a continuous function, which is typically decreasing with
the distance from x0 to x (like a kernel function). Thus, the invading species is first
introduced around x0 at τ0.

The subsequent introductions (i.e. the jumps) are assumed to be governed by a
spatio-temporal homogeneous Poisson point process Ψ with constant intensity λ over
Ω× (τ0, τend). Let {ψ1

0 , · · · , ψN0 } be a realization of Ψ where ψi0 = (xi0, Ti), and set
(x0

0, T0) = (x0, τ0) and TN+1 = τend. We define the spatio-temporal PDMP
{Xt}τ0≤t<τend by:

Xt(x) =


f(x,x0

0) if t = T0 = τ0

u(t,x) if t ∈ (Ti, Ti+1), i = 0, . . . , N

u(t,x) + f(x, xi0) if t = Ti, i = 1, . . . , N

where u is governed by Equation [8.6] over (Ti, Ti+1] with initial state at Ti being
XTi . Then, min{1,max{0, Xt(x))}} is viewed as the probability that a plant located
at x ∈ Ω is infected at time t. The min−max operator is used because Xt may
sporadically go out of [0, 1].

In the application of interest, namely the invading dynamic of Xf in Corsica, the
estimation of model parameters (D, b, θ, λ and eventual parameters arising in f )
and latent variables (jump times Ti and introduction locations xi0) will be carried out
in a mechanistic-statistical framework, which can cope with various types of data
[ROQ 11, SOU 09a, SOU 09b, WIK 03a, WIK 03b]. Consider, for instance, that data
collection consists of independently sampling plants in Ω× (τ0, τend) and diagnosing
their health statuses. Let Z(sj , tj) ∈ {0, 1} be the observed health status of plant j
sampled at location sj and time tj , j = 1, . . . , n, where 0 stands for the observed
healthy status and 1 for the observed infected status. Let εFN be the probability of
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diagnosing a plant as healthy whereas it is infected (false-negative rate) and εFP be the
probability of diagnosing a plant as infected whereas it is healthy (false-postive rate).
Then, Z(sj , tj) can be assumed to be Bernoulli distributed as follows:

Z(sj , tj) | {Xt}
indep.∼ Bernoulli

(
εFN(1− εFP) min{1,max{0, Xtj (sj))}}

)
,

and the estimation of model parameters and latent variables can be made, in a
frequentist or Bayesian framework, with the resulting likelihood and an appropriate
algorithm (an example of Bayesian algorithm will be given in the next section for a
different model).

7.3. Metapopulation Epidemic Model

7.3.1. Spatially Realistic Levins Model

In ecology, the class of Stochastic Patch Occupancy Models (SPOM) has been
developed to characterize and infer the dynamics of metapopulations. A
metapopulation is a set of spatially separated populations of the same species which
interact via between-population migrations of individuals. Among this class of
models, the spatially realistic Levins model (SRLM) is a major reference [OVA 04].

Consider a set of n circular habitat patches with areas ai > 0 and centers xi ∈ R2,
i ∈ I = {1, . . . , n}. Let di,j denote the Euclidean distance between xi and xj . The
binary variable Yi(t) ∈ {0, 1} gives the occupation status of patch i at time t ∈ R:
Yi(t) = 1 if patch i is occupied by the species of interest at t, Yi(t) = 0 otherwise.
The random vector Y(t) = {Y1(t), . . . , Yn(t)} follows a binary-state continuous-time
Markov process with inhomogeneous transition rates. Local extinctions independently
occur with a constant rate ei, which is typically proportional to the patch area ai:

P(Yi(t+ dt) = 0 | Yi(t) = 1) = eidt.

Colonizations of unoccupied patches occur with a time-varying rate depending on the
occupation status of the other patches and their distance with respect to the focal patch:

P(Yi(t+ dt) = 1 | Yi(t) = 0) =

n∑
j=1
j 6=i

cijYj(t)dt,

where cij is typically a function of the distance dij and other patch characteristics such
as the areas ai and aj . In general, the larger dij , the lower cij (source patches send
more migrants to close patches than to further patches), and the larger ai and aj , the
larger cij (large patches send more migrants and have a higher propensity to receive
migrants).
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7.3.2. A Colonization Piecewise-Deterministic Markov Process

Here, we are interested in a pathogen metapopulation. Thus, in what follows, we
adopt the vocabulary of epidemiology. In particular, thereafter, a patch is a set of hosts
for the pathogen of interest, an occupied patch is a patch that is infected by a pathogen
population, and an unoccupied patch is said to be healthy.

This section presents the metapopulation model proposed in [SOU 09a], which
differs from the Levins model mainly because (i) extinctions and colonizations occur
on distinct periods, (ii) the binary occupation status Yi(t) is augmented by a
time-varying quantitative variable providing the size of the pathogen population
within patch i, and (iii) observation variables are explicitly introduced in the model.
To simplify the presentation of the model, we focus on the metapopulation dynamic
during one year, which is assumed to consist of two successive periods: the
dormancy period and the growing season period. Without loss of generality, we
assume that dormancy occurs during the time interval [−1, 0) while the growing
season occurs during the interval [0, 1). The initial time t = −1 is just after the end
of the previous growing season, while time t = 1 corresponds to the beginning of the
next season.

In the following, infection times Ti (i ∈ I) denote the times of initiation of local
epidemics in the year under consideration; let T = {Ti : i ∈ I}. As a local epidemic
can only occur during the growing season, Ti ≥ 0. We assume that the pathogen
survived in patch i during the dormancy if and only if Ti = 0. In the case of local
epidemics not due to survival of the pathogen in patch i the infection time is a
colonization time. By convention, we set Ti ≥ 1 if patch i is still healthy at time
t = 1.

Observation variables

Â The metapopulation dynamic is observed at the patch level at times t = −1
and t = 1, i.e. the end of successive years. Given that sampling is not complete (there
are some patches whose health statuses are not observed) and that infections are not
always detected, we introduce the observation variables Y obs

i,t , i ∈ I = {1, . . . , n} and
t ∈ {0, 1}:

Y obs
i,t =


0 if the meadow is observed as healthy
1 if the meadow is observed infected
NA if the meadow is not sampled.

There are no false-positives (i.e. healthy patches observed as infected). In addition,
vectors of explanatory variables are observed at the patch level, namely the patch
coordinates xi, the area ai covered by the patch and {Bi, Ci, Di} that will arise in the
model as regressors.
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In the model, the response variables are the observations Yobs
1 = {Y obs

i,1 : i ∈ I} at
time t = 1, and we work conditionally on past observations Yobs

−1 = {Y obs
i,−1 : i ∈ I}

and covariates {xi, ai, Bi, Ci, Di : i ∈ I}. The observed final health statuses Y obs
i,1 are

assumed to be independently drawn from {0, 1, NA} with unequal probabilities, given
actual final health statuses:

Y obs
i,1 | Yi(1) ∼ α1Dirac(0) + α2Dirac(1) + (1− α1 − α2)Dirac(NA),

where α1 and α2 account for misclassification and incompleteness in the observation
process at t = 1 and satisfy:

α1 = r1
p1

p1 + q1(1− p1)

α2 = r1

(
1− p1

p1 + q1(1− p1)

)
p1 = P(Y obs

i1 = 1 | Y obs
i1 6= NA)

q1 = P(Yi,1 = 1 | Y obs
i1 = 0)

r1 = P(Y obs
i1 6= NA).

Probabilities p1, q1 and r1 are observation parameters whose values are assessed
before fitting the model to data and plugged in the model.

Extinctions
Extinctions of the pathogen in infected patches can only occur during the

dormancy period [−1, 0). Times of extinction are not explicitly introduced into the
model. We simply assume that extinctions between times -1 and 0 are, conditionally
on observations Y obs

i,−1, the result of independent Bernoulli draws for the infection
statuses Yi(0) of patches:

Yi(0) | Y obs
i,−1 ∼ Bernoulli(bis(Y obs

i,−1))

bi = logit−1(BTi β)

s(Y obs
i,−1) =


1 if Y obs

i,−1 = 1

q−1 if Y obs
i,−1 = 0

p−1 + q−1(1− p−1) if Y obs
i,−1 = NA,

[7.7]

where bi gives the conditional probability of pathogen survival given that patch i was
infected in the beginning of dormancy, and s deals with misclassification and
incompleteness of the observation process at time t = −1. bi is a function of
observed covariates Bi and a vector of parameters β (BTi is the transpose of Bi),
p−1 = P(Y obs

i,−1 = 1 | Y obs
i,−1 6= NA) and q−1 = P(Yi,−1 = 1 | Y obs

i,−1 = 0).
Probabilities p−1 and q−1 are observation parameters whose values are assessed
before fitting the model to data and plugged in the model. By convention, Yi(0) = 1
if and only if Ti = 0.
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Colonizations

Healthy patches are immune during the dormancy and susceptible within the
growing season. Infected patches are infectious only during the growing season. The
degrees of susceptibility and infectiousness depend on explanatory variables and time
as described below. In addition, already infected patches cannot be over-infected
during the growing season.

The spread of the pathogen during the growing season is modeled as a
spatio-temporal piecewise-Poisson point process [ILL 08] . In this process, point
(t, x) specifies a time and a location at which the numbers of dispersing incoming
pathogen are large enough to potentially initiate a local epidemic in a healthy patch
with a standard degree of susceptibility. Thus, each point stands for a potential
colonization event.

The point process is governed by an intensity function λ̃ quantifying the risk of
infection at each space-time location, this risk being generated by the already infected
patches. Therefore, λ̃ varies in time and space with the number, the spatial locations
and the infectiousness of these patches. The expression of λ̃ at time t and location x
is given by:

λ̃(t, x) =
∑
j∈It

cjgj(t− Tj)h(x, xj), [7.8]

where It = {j ∈ I : Tj < t} is the set of patches infected before time t; cj encodes
characteristics of patch j such as its physiological state and features of the
surrounding habitat, which are expected to partly determine the infectiousness of j;
gj is a deterministic standardized disease progress function, which gives the shape of
the pathogen growth within patch j; h is a dispersal function, which models pathogen
dispersal as a function of the source location xj and the location of the receiving
patch x. The product cjgj(t− Tj) specifies the degree of infectiousness of patch j at
time t. In the beginning of the growing season, just after time zero, λ̃ is generated
only by those patches in which the pathogen survived during the dormancy.

The standardized disease progress function is specified with a thresholded
quadratic form:

gj(t) = min{t2, ωaj}1(t ≥ 0), [7.9]

where ω is a positive parameter. The threshold ωaj takes into account possible
saturation effects, which are assumed to be proportional to the patch area aj .
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The dispersal function h is specified as an anisotropic exponential dispersal
function parameterized by η = (η1, . . . , η5) [SOU 07]:

h(x, x′) =
h1{φ(x− x′)}
h2{φ(x− x′)}2

exp

(
− ||x− x′||
h2{φ(x− x′)}

)
,

where φ(x−x′) is the angle made by the vector x−x′, ||x−x′|| is the distance between
x and x′, h1(φ) gives the probability that a spore is dispersed in direction φ, and h2(φ)
gives the expected distance travelled by a spore dispersed in direction φ. The angular
function h1 is assumed to be a von Mises density function [FIS 95] parameterized by
a mean direction parameter η1 ∈ R and a dispersion parameter η2 > 0:

h1(φ) = {2πI0(η2)}−1 exp{η2 cos(φ− η1)},

with I0(u) = (2π)−1
∫ 2π

0
exp{u cos(φ)}dφ. The angular function h2 is assumed to

be proportional to a von Mises density function parameterized by a mean direction
parameter η3 ∈ R, a dispersion parameter η4 > 0

h2(φ) = η5{2πI0(η4)}−1 exp{η4 cos(φ− η3)},

where η5 > 0 is the constant of proportionality.

A healthy patch i is colonized during the growing season if a point of the piecewise
Poisson point process is deposited in i and it succeeds in initiating a local epidemic.
The intensity of points deposited in i at time t is given by the product aiλ̃(t, xi); ai
is considered as the effective capture area of patch i and x 7→ λ̃(t, x) is assumed to
be approximately constant over patch i. Any deposited point is assumed to initiate a
local epidemic with probability di, which reflects the degree of susceptibility of i and
encodes individual characteristics such as local climatic conditions.

Quantities cj and di always appear in the model as the product cjdi. They are
jointly modeled as a function of explanatory variables: cjdi = exp(CTj γ + DT

i δ),
where Cj and Di are vectors of covariates, and γ and δ are vectors of parameters.

PDMP formulation of the colonization dynamic

Let Xt ∈ X , t ∈ [0, 1], be the [2× n] matrix satisfying:

Xt =

(
X11(t) · · · X1n(t)
X21(t) · · · X2n(t)

)
=

(
c1g1(t− T1) · · · cngn(t− Tn)

Y1(t) · · · Yn(t)

)
,

where each column provides, for a given patch, the size of the pathogen population at
time t and the health status of the patch at time t (remind that Yi(t) = 1(t ≥ Ti)).
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We introduce the function Φ = (Φ1, . . . ,Φn) : X × R+ → X whose j-th
component satisfies:

Φj(x, t) =



(
0

0

)
if x2j = 0(

cj min{(t+
√

x1j/cj)
2, ωaj}

1

)
if x2j = 1.

[7.10]

Let Ti and Ti′ be two successive colonization times (i.e. 0 < Ti < Ti′ and no
colonization occurred in the time interval (Ti, Ti′)), called jump times in the PDMP
framework. The inter-jump duration Si′ = Ti′ − Ti has a survival function detailed
in Equation [8.16] that takes an exponential form depending on the multivariate jump
rate λ : X 7→ Rn+:

λ(Xt) =

 d1a1λ̃(t, x1)(1− Y1(t))
...

dnanλ̃(t, xn)(1− Yn(t))

 ,

where λ̃ was defined in Equation [8.8] and can be expressed as a function of Xt, and
the variables Y1(t), . . . , Yn(t) are the components of the 2nd row of Xt.

Using Equations [8.9] and [8.10], Xt is a PDMP with flow function Φ:

Xt =

{
Φ(XTi , t) if t ∈ [Ti, Ti′)

Ui′ if t = Ti′ ,

where Ui′ is drawn from the jump kernel Qi′(Φ(XTi , Si′), ·). In the simplest case
(the one which is considered thereafter), the jump kernel is a Dirac distribution, which
changes only the health status X2i′(t) = Yi′(t) of i′ from healthy to infected:

Ui′ = Φ(XTi , Si′) +

(
0n

1n(i′)

)
,

where 0n is the raw vector with n zeros and 1n(i′) is the raw vector whose i′-th
element is equal to 1 and the n− 1 other elements are equal to 0. This form could be
generalized by drawing a random value for the size of the pathogen populationX1i′(t)
in patch i′ when this patch is colonized:

Ui′ = Φ(XTi , Si′) +

(
min{Ui′ , ωai′ci′}1n(i′)

1n(i′)

)
,
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where the real variable Ui′ should be randomly drawn in R+. As mentioned above,
we use thereafter the simplest case:

Xt =


Φ(XTi , t) if t ∈ [Ti, Ti′)

Φ(XTi , Si′) +

(
0n

1n(i′)

)
if t = Ti′ .

7.3.3. Bayesian Inference Approach

We aim to infer infection times T and parameters Θ = (ω, η, β, γ, δ) given
observed health statuses Yobs

i,−1 and Yobs
i,1 , covariates Z = {xi, ai, Bi, Ci, Di : i ∈ I}

and observation parameters κ−1 = (p−1, q−1) and κ1 = (p1, q1) (we will see below,
in Remark 1, that the observation parameter r1 can be removed from the model in the
inference stage). The inference is made by using the probability distribution
P (Yobs

1 | Yobs
−1,Z), which can be written as follows:

P (Yobs
1 | Yobs

−1,Z) =

∫
T

Pκ1
(Yobs

1 | T)dPΘ,κ−1
(T | Yobs

−1,Z). [7.11]

Equation [8.11] highlights the hierarchical structure of the model. In the first stage,
the term PΘ,κ−1(T | Yobs

−1,Z) gives the distribution of infection times given the
observed initial statuses and covariates. This term incorporates the survival process
during dormancy and the colonization PDMP parameterized by Θ, and the
observation process at time t = −1 parameterized by κ−1. In the second stage, the
term Pκ1

(Yobs
1 | T) gives the distribution of the observed final statuses given

infection times. This term corresponds to the observation process at time t = 1
parameterized by κ1. Note that when T is known, Yobs

−1 and Z bring no information
on Yobs

1 , i.e. Pκ1
(Yobs

1 | T,Yobs
−1,Z) = Pκ1

(Yobs
1 | T).

Equation [8.11] can be used to infer the unknowns T and Θ. However, the
integral at the right-hand-side cannot be calculated analytically. To overcome this
difficulty, the infection times T can be considered as latent variables, whose
distribution is specified by PΘ,κ−1(T | Yobs

−1,Z), and inference can be carried out
with a Markov chain Monte Carlo (MCMC) method in the Bayesian context
[ROB 99] or a Monte Carlo expectation maximization method in the frequentist
context [WEI 90].

In this study, we chose the Bayesian approach and we applied MCMC using a
Metropolis-Hastings algorithm to draw a sample from the posterior distribution of the
parameters and the infection times. The posterior distribution, up to a normalizing
constant, can be written as

Pκ−1,κ1
(Θ,T | Yobs

−1,Y
obs
1 ,Z) ∝ Pκ1

(Yobs
1 |T)PΘ,κ−1

(T | Yobs
−1,Z)π(Θ),[7.12]
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where π is the prior distribution of Θ and the symbol ‘∝’ means ‘proportional to’.
The following paragraphs provide the expressions of the terms appearing in
Equation [8.12].

Expression of P (T | Yobs
−1 ,Z)

Here, we give the expression of the conditional probability of any space-time
configuration T, describing what patches are infected at what times, given the
observed initial health statuses Yobs

−1 and covariates Z. Thereafter, for the sake of
convenience, we omit the conditioning covariates and the conditioning parameters in
the notation.

We make the three following assumptions in addition to those made above. First,
the infection potential is constant within each patch. Second, the degree of
susceptibility of a healthy patch at time zero is independent of the initial health status
at time t = −1. Third, points of the Poisson point process located in susceptible
patches independently succeed in initiating local epidemics. The success of a point in
initiating a local epidemic is patch dependent. It is measured by the success
probability di which reflects the degree of susceptibility of i and encodes individual
characteristics such as local climatic conditions.

Let t1, . . . , tn be times in [0, 1] and IA = {i ∈ I : ti = 0}, IB = {i ∈ I :
0 < ti < 1} and IC = {i ∈ I : ti = 1}. IA, IB and IC are associated, respectively,
with the sets of patches where the pathogen survived during the dormancy, which were
colonized during the season and which remained healthy. We show below that:

P ({Ti = 0 : i ∈ IA}, {Ti = ti : i ∈ IB}, {Ti ≥ 1 : i ∈ IC} | Yobs
−1)

=
∏
i∈IA

bis(Y
obs
i,−1)

∏
i∈IB

{1−bis(Y obs
i,−1)}e−diaiΛ̃(ti,xi)diaiλ̃(ti, xi)

×
∏
i∈IC

{1−bis(Y obs
i,−1)}e−diaiΛ̃(1,xi),

[7.13]

where Λ̃(t, x) =
∫ t

0
λ̃(s, x)ds is the time-cumulated infection risk affecting location

x. Quantities di and cj are only contained in diaiλ̃(ti, xi) and diaiΛ̃(ti, xi) as the
product form dicj . This product was directly modeled (instead of separately modeling
di and cj) to avoid identifiability difficulties in parameter estimation.

In Equation [8.13], the term bis(Y
obs
i,−1) is the probability of pathogen survival in i

during the dormancy. In the second product of [8.13], the term 1−bis(Y obs
i,−1) is the

probability of pathogen extinction in i during the dormancy. The term
e−diaiΛ̃(ti,xi)diaiλ̃(ti, xi) is the probability that i remained susceptible during [0, ti)
and was infected at ti. The product diaiλ̃(t, xi) of the degree of susceptibility di, the
capture area ai, and the infection risk λ̃(t, xi) measures the instantaneous risk of
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infection of patch i at time t. Finally, in the third product of [8.13], 1−bis(Y obs
i,−1) is

the probability of pathogen extinction in i during the dormancy and e−diaiΛ̃(1,xi) is
the probability that i remained healthy during the epidemic period [0, 1].

Proof of Equation [8.13]

Let τ0, . . . , τn+1 be n+ 2 ordered times in [0, 1] satisfying

0 = τ0 = · · · = τq < · · · < τr = · · · = τn+1 = 1,

and I∗ = {i1, . . . , in} be a permutation of I = {1, . . . , n}. We want to determine the
conditional probability that, given the observed initial statuses Yobs

−1 and the covariates
Z,

– patch ik (k ≤ q) is infected at time τk = 0 (survival of the pathogen during
dormancy),

– patch ik (q < k < r) is the k-th patch to be infected and its infection time is
τk ∈ (0, 1) (colonization),

– patch ik, k ≥ r, is still susceptible at time τk = 1.

In other words, we want to determine

p(I∗, τ ; Yobs
−1) =P ({Tik = τk : k < r}, {Tik > τk : k ≥ r} | Yobs

−1)

where τ = {τ1, . . . , τn}. Note that times τq+1, · · · , τr−1 corresponding to
colonization events are mutually different and different from one under the Poisson
assumption.

Let A = {Tik = τk : k ≤ q}, B = {Tik = τk : q < k < r}, C = {Tik > τk : k ≥
r} and D = {Tik > 0 : k > q}. As {Tik = τk : k < r} = A ∩ B and the event D is
included in B ∩ C,

p(I∗, τ ; Yobs
−1) =P (A,B, C | Yobs

−1)

=P (A,B, C,D | Yobs
−1)

=P (C | A,B,D,Yobs
−1)P (B | A,D,Yobs

−1)P (A | D,Yobs
−1)P (D | Yobs

−1).

The two last terms at the right-hand-side of the previous equation correspond to
survivals and extinctions during the dormancy and can be written as

P (A | D,Yobs
−1) =P (A | Yobs

−1) =
∏
k≤q

P (Tik = 0 | Y obs
ik,−1) =

∏
k≤q

biks(Y
obs
ik,−1)

[7.14]

P (D | Yobs
−1) =

∏
k>q

P (Tik > 0 | Y obs
ik,−1) =

∏
k>q

{1− biks(Y obs
ik,−1)}. [7.15]
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where function s, satisfying s(y) = (q−1)1(y=0){p−1 + q−1(1− p−1)}1(y=NA), y ∈
{0, 1, NA}, comes from [8.7].

The term P (B | A,D,Y−1) is the conditional probability density function of
the colonization times. So, it corresponds to the pathogen spread during the season
modeled using a piecewise spatio-temporal Poisson point process with intensity λ̃ (see
eq. [8.8]). Assuming that the degree of susceptibility of a patch not infected at time
zero is not affected by the initial health status, P (B | A,D,Yobs

−1) can be decomposed
into

P (B |A,D,Yobs
−1) =

∏
q<k<r

P (Tik = τk | {Tij = τj : j < k})

=
∏

q<k<r

P (Tik = τk, {Tij > τk : j > k} | {Tij = τj : j < k})

=
∏

q<k<r

(
−
∂P (Tik > t, {Tij > τk : j > k} | {Tij = τj : j < k})

∂t

∣∣∣∣
t=τk

)
.

P (Tik > t, {Tij > τk : j > k} | {Tij = τj : j < k}) is the probability that
the k-th patch to be infected is not infected during the time interval [τk−1, t], and
that the other remaining susceptible patches are not infected during the time interval
[τk−1, τk]. Hence,

P (Tik > t,{Tij > τk : j > k} | {Tij = τj : j < k})

=P (Nik(τk−1, t) = 0, {Nij (τk−1, τk) = 0 : j > k} | {Tij = τj : j < k}),

where Ni(t1, t2) is the number of points —of the Poisson point process— which
(i) are located in the spatial surface Ai covered by patch i, (ii) are located in the time
interval [t1, t2], and (iii) are effectively efficient for initiating a local epidemic.
Condition (iii) depends on the degree of susceptibility of the patch in question. We
assume that the filter due to (iii) is an independent thinning operator
[DIG 83, STO 95] with the probability di of thinning which depends on local
characteristics. From the Poisson and thinning assumptions, Ni(t1, t2) is Poisson
distributed with mean value di

∫
Ai

∫ t2
t1
λ̃(t, x)dtdx. Assuming that the infection risk

is constant on the spatial surface Ai (with area ai and centroid xi) yields

Ni(t1, t2) | {Tj : j ∈ It2} ∼ Poisson(diaiΛ̃(t1, t2, xi))

Λ̃(t1, t2, xi) =

∫ t2

t1

λ̃(s, xi)ds.
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The distribution ofNi(t1, t2) is conditional on infection times in the past of t2 because
λ̃ is a function of these times on [t1, t2] (see eq. [8.8]). Moreover,Nij (τk−1, t) (j ≥ k)
are independent for t ∈ [τk−1, τk]. This yields

P (Tik > t,{Tij > τk : j > k} | {Tij = τj : j < k})

= exp{−dikaik Λ̃(τk−1, t, xik)}
∏
j>k

exp{−dijaij Λ̃(τk−1, τk, xij )}.

[7.16]

It follows

P (B | A,D,Yobs
−1) =

∏
q<k<r

dikaik λ̃(τk, xik)
∏
j≥k

exp{−dijaij Λ̃(τk−1, τk, xij )}

 .

[7.17]

The term P (C | A,B,D,Yobs
−1) corresponds to the patches which remain

susceptible at the end of the season. Its expression was also derived using the Poisson
point process. Indeed, P (C | A,B,D,Yobs

−1) is the probability that patches ik (k ≥ r)
remain susceptible during the time interval [τr−1, 1], i.e. after the infection of the
(r − 1)-th patch to be infected. Thus,

P (C | A,B,D,Yobs
−1) =

∏
k≥r

P (Nik(τr−1, 1) = 0 | {Tij = τj : j < r}) [7.18]

=
∏
k≥r

exp{−dikaik Λ̃(τr−1, 1, xik)} [7.19]

From [8.14], [8.17] and [8.18], it follows

p(I∗, τ ; Y−1) =
∏
k≤q

biks(Yik,−1)

×
∏

q<k<r

{1− biks(Yik,−1)}dikaik λ̃(τk, xik) exp{−dikaik Λ̃(0, τk, xik)}

×
∏
k≥r

{1− biks(Yik,−1)} exp{−dikaik Λ̃(0, 1, xik)}

Expression of P (Yobs
1 | T)

It is assumed that infected patches remain infected until the end of the season, i.e.
if Ti < 1, then Yi(1) = 1. Moreover, we add one assumption to those made on the
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observation process when survivals during the dormancy were modeled: the success
in detecting an infection does not depend on the infection time.

Using material provided in the paragraph entitled Observation variables in Section
8.3.2, the distribution P (Yobs

1 | T) satisfies:

P (Yobs
1 | T) =

∏
i∈I

P (Y obs
i1 | Ti)

=
∏

i:Y obs
i1

=1

p11(Ti < 1)

p1 + q1(1− p1)

∏
i:Y obs

i1
=0

(
1− p11(Ti < 1)

p1 + q1(1− p1)

)

× (r1)
∑

i
1(Y obs

i1 6=NA)(1− r1)
∑

i
1(Y obs

i1 =NA),

[7.20]

Remark 1. Assessing r1 prior to the estimation procedure is not required since the
term (r1)

∑
i
1(Y obs

i1 6=NA)(1 − r1)
∑

i
1(Y obs

i1 =NA) in [8.20] brings no information on the
dynamics and can be removed from the posterior distribution in the MCMC.

Remark 2. In [8.20], the fraction p11(Ti < 1)/{p1 +q1(1−p1)} is the probability
that Y obs

i1 = 1 given the infection time Ti and given that the patch is sampled at time
t = 1. It equals zero if Ti ≥ 1 since a healthy patch is never observed as infected.
It is less than one if Ti < 1 since the pathogen presence in an infected patch can be
undetected.

7.3.4. Markov Chain Monte Carlo (MCMC) Algorithm

This section shows how to sequentially update the parameters and the infection
times in the MCMC algorithm, by exploiting the decomposition properties of the
posterior distribution (block updating).

The posterior distribution can be decomposed as follows. We split Θ into two
subsets: Θ = (θ1, θ2), where θ1 is the parameter vector used to specify the survival
probabilities bi (i ∈ I), and θ2 is the parameter vector used in the infection risk λ̃.
Actually, θ2 parameterize ci, di, g and h which appear in λ̃. The posterior distribution
Pκ−1,κ1

(Θ,T | Yobs
−1,Y

obs
1 ) can be decomposed into, up to a multiplicative constant,

Pκ−1,κ1(Θ,T | Yobs
−1,Y

obs
1 ) ∝ Pκ1(Yobs

1 |T)Qκ−1(T,Yobs
−1, θ1)Q(T, θ2)π1(θ1)π2(θ2)

[7.21]
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where π1 and π2 are the prior distributions for θ1 and θ2, Pκ1(Yobs
1 | T) is given

by [8.20], and

Qκ−1(T | Yobs
−1, θ1) =

∏
i:Ti=0

bis(Y
obs
i,−1)

∏
i:Ti>0

{1− bis(Y obs
i,−1)} [7.22]

Q(T | θ2) =
∏

i:0<Ti<1

diaiλ̃(Ti, xi)e
−diaiΛ̃(Ti,xi)

∏
i:Ti≥1

e−diaiΛ̃(1,xi),

[7.23]

are obtained from [8.13].

Let Tc, θc1 and θc2 denote current values for the infection times and the parameters
in the algorithm. Let T∗, θ∗1 and θ∗2 be candidate values respectively drawn from the
proposal distributions q(· | Tc), q(· | θc1) and q(· | θc2). First, T∗ replaces Tc with
probability

min

{
1,
Pκ1

(Yobs
1 |T∗)Qκ−1

(T∗,Yobs
−1, θ

c
1)Q(T∗, θc2)q(Tc | T∗)

Pκ1(Yobs
1 |Tc)Qκ−1(Tc,Yobs

−1, θ
c
1)Q(Tc, θc2)q(T∗ | Tc)

}
.

No significant simplification is possible in the calculation of this acceptance
probability (only the priors disappear). Second, θ∗1 replaces θc1 with probability

min

{
1,
Qκ−1(Tc,Yobs

−1, θ
∗
1)π1(θ∗1)q(θc1 | θ∗1)

Qκ−1
(Tc,Yobs

−1, θ
c
1)π1(θc1)q(θ∗1 | θc1)

}
.

Here, only the new value of [8.22] and π1(θ∗1) must be computed. Third, θ∗2 replaces
θc2 with probability

min

{
1,
Q(Tc, θ∗2)π2(θ∗2)q(θc2 | θ∗2)

Q(Tc, θc2)π2(θc2)q(θ∗2 | θc2)

}
.

Here, only the new value of [8.23] and π2(θ∗2) must be computed.

If the number of infection times is large, then the proposed infection times will
certainly be always rejected. To overcome this issue, one can sequentially update
subsets of infectious times. For any subset J of I, we can draw candidate values
T∗J = {T ∗i : i ∈ J } from a proposal distribution q(· | Tc

J ), where
Tc
J = {T ci : i ∈ J }, and accept it with probability

min

{
1,
Pκ1

(Yobs
1 |T∗)Qκ−1

(T∗,Yobs
−1, θ

c
1)Q(T∗, θc2)q(Tc

J | T∗J )

Pκ1
(Yobs

1 |Tc)Qκ−1
(Tc,Yobs

−1, θ
c
1)Q(Tc, θc2)q(T∗J | Tc

J )

}
,

where component i of T∗ is T ∗i if i ∈ J , and T ci else. Note that a similar procedure
can be applied for θ1 and θ2 if their dimensions are extensive.
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7.3.5. Example of Results

The inference approach presented above was applied to infer the metapopulation
dynamic of the powdery mildew Podosphaera plantaginis, which is a fungal pathogen
of the host plant Plantago lanceolata, in the Åland Islands. Host plants are spread in
more than 4000 meadows (i.e. patches) in this archipelago. Figure 8.6 shows patches
observed as infected in 2003 and 2004. Details about data, prior distributions, MCMC
tuning and results can be found in [SOU 09a]. Here, we only illustrate the type of
output that can be obtained, namely the posterior distributions of the infection times
in 2004 of six different patches; see Figure 8.7. Each of the six distributions shows
a typical pattern, from the patch that was certainly infected in the beginning of the
growing season (patch 1) to the patch that certainly remained healthy until the end of
the season (patch 6).
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Figure 7.6: Map of the Åland Islands and patches of Plantago lanceolata that are
healthy (dots) and infected (circles) in 2003 (top panel) and 2004 (bottom panel).

7.4. Stochastic Approaches for Modeling Spatial Trajectories

The study of animal movements informs on both individual behaviors of focal
species and population-level dynamics. In particular, the characterization of territories
used by individuals can be assessed via an estimation of the expected movements
of animals, using discretely located data obtained at some given observation times.
Many other application domains (e.g. physics of particles and transportation science)
actually share the same questions regarding statistical inference of movements and
trajectory reconstitution conditional on observations.
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Figure 7.7: Zero-one-inflated posterior distributions of the infection times in year
2004 of six different patches (top panels). Locations of patches in the Åland Islands
are indicated in the top panel. In each top panel, the dots at times zero and one give

the posterior probabilities that the infection time is zero and one, respectively.

Various theoretical models for describing movements are available. Initially,
continuous-time movements were often assumed to be simple Brownian motions
[HOR 07], but then more and more general stochastic differential equations have
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been proposed [IAC 08]. Other approaches consider movements in a discrete-time
context, mainly using multivariate Markov chains.In this section and in connection
with the topic of the book, we will only consider time-continuous processes. From
the numeric and inferential point of view, several R packages are available for
performing statistical analyses of trajectories (e.g. Move, BBMM and
MovementAnalysis).

In what follows, we present the simple case of interpolating punctual observations
along a d-dimensional Brownian motion giving rise to the so called Brownian bridge.
Then, we show how one can use the stochastic machinery, namely the martingale
machinery of predictable compensation for jumps, for building models of trajectories
with jumps that can be viewed as PDMPs. We illustrate our approach by exhibiting
the diversity of behaviors that elementary examples may exhibit.

Notation

We will assume that the continuous index set for processes is time. Naturally,
depending on the topic, one can replace the time index by any other real variable that
have a pertinent meaning with respect to the underlying dynamics. Scalar elements
(either constants, functions or processes) will be denoted by capital letters (e.g., X),
vector elements by bold letters (x), and matrix elements by capital bold letters (X).
Moreover, note that random functions include deterministic ones, and that the term
process is used with a generic meaning, whereas the term sequence denotes only
discrete-time random processes.

7.4.1. Conditioning a Brownian Motion by Punctual Observations

Due to the lack of relevant knowledge or because of their characteristics,
movements of animals or particles in spatial domains are often modeled as
realizations of Brownian processes, which are viewed as reference models for
trajectories. We recall that a standard d-dimensional Brownian motion w(t) in Rd
simply consists of d independent copies of one-dimensional standard Brownian
motions Wi(t) with Wi(0) = 0, i = 1, · · · , d. w(t) being Gaussian, it is entirely
characterized by its first order moments: E(w(t)) = 0 and
E(w(t)wT (s)) = (t ∧ s)Id where Id stands for the d-unit matrix.

Observations of a random processes x(t) representing a trajectory, even when they
are dense in time, always yield a sequential data set yn = x(Ty

n ) for observation
time Ty

n , n = 1, 2, . . .. Assuming that these observation times are independent of
the process, one can infer some statistical characteristics of x(t) and then take into
account observations to simulate (i.e. reconstruct or interpolate) the non-observed part
of the trajectory. In the case of the Brownian motion, the conditioning with respect to
observations gives the so-called Brownian bridge.
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Brownian bridge on Rd

The Brownian bridge X(t), t ∈ [0, 1], in R is defined (in distribution) as a
Brownian motion W (t), t ∈ [0, 1], conditional on the knowledge that at t = 1,
W (t) = 0. A path-wise definition exists: X(t) = W (t)− tW (1), t ∈ [0, 1].

This definition can be straightly extended to any interval [T1, T2]. Using the
specific properties of conditional expectation for Gaussian distribution, one can
easily prove that conditionally on {W (T1),W (T2)}, the Brownian bridge
X(t), t ∈ [T1, T2], is a Gaussian process, with E(X(t)) = W (T1)(T2−t)+W (T2)(t−T1)

T2−T1

and E(X(t)X(s)) = (T2−t)(s−T1)
T2−T1

= C(t, s), independent of W (T1), W (T2), for
T1 ≤ s ≤ t ≤ T2.

In particular, X(t) follows a Gaussian distribution with mean
µ(t) = a1 + t−T1

T2−T1
(a2 − a1) and variance σ2(t) = C(t, t) where a1 = W (T1) and

a2 = W (T2).

A d-dimensional Brownian bridge x(t) = (X1, . . . , Xd)(t), t ∈ [T1, T2], with
x(Tj) = aj = (a1,j , . . . , ad,j) ∈ Rd, j = 1, 2, is defined as a vector of d independent
Brownian bridges Xi(t) with Xi(Tj) = ai,j , j = 1, 2. More explicitly, x(t) has
a Gaussian density ϕ(x|µ(t),Σ(t)) with mean µ(t) = a1 + t−T1

T2−T1
(a2 − a1) and

covariance matrix Σ(t) = (T2−t)(s−T1)
T2−T1

Id.

Brownian bridge with noisy extremal points

Due to measurement errors, the points aj , j = 1, 2, are generally random. If we
assume these points to be independent with densities faj , j = 1, 2, the distribution of
x(t) can be written:

P (x(t) ∈ D) =

∫
Rd×Rd

(∫
D
ϕ(x|µ(t),Σ(t))dx

)
fa1

(u)fa2
(v)dudv, D ⊂ Rd.

In the case of Gaussian densities faj (u) =
∏d
i=1 ϕ(ui|ai,j , σ2

j ), j = 1, 2, the
process x(t) remains Gaussian with mean µ(t,a1,a2) = a1+ t−T1

T2−T1
(a2−a1) whereas

its covariance matrix satisfies Σ∗(t) = σ∗2(t)Id with

σ∗(t) =
(T2 − t)(t− T1)

T2 − T1
+ σ2

1

(
T2 − t
T2 − T1

)2

+ σ2
2

(
t− T1

T2 − T1

)2

.

Mean occupation time

An important index in ecological studies is the mean occupation time of space
domain D during a time interval [t1, t2], which is defined as the non-negative random
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Figure 7.8: Paths in the plane of a standard Brownian motion starting at point (0,0)
marked by "1" and arriving at an unconditioning point marked by "2" (left) and a

standard Brownian bridge starting and arriving at point (0,0) marked by "1" (right).

variable τD = 1
t2−t1

∫ t2
t1

1{x(t)∈D}dt. Its expectation ν(D) = E(τD) induces an
absolutely continuous measure with density:

h(x) =
1

t2 − t1

∫ t2

t1

ϕ(x | µ(t,a1,a2),Σ∗(t))dt.

Related statistical issues

For ecological and territory planing purposes, one can be interested in the
estimation of the density h(x) after collecting a set of observations
(Tj ,x(Tj) = aj), j = 1, . . . , n + 1. Assume that these data are drawn from a
d-dimensional Brownian motion with diffusion coefficient σ2 and variances of
measurement errors σ2

j depending on locations aj , and for t ∈ [Tj , Tj+1], and let

µj(t) = µ(t,aj ,aj+1)

σ∗j (t) = σ2 (Tj+1 − t)(t− Tj)
Tj+1 − Tj

+ σ2
j

(
Tj+1 − t
Tj+1 − Tj

)2

+ σ2
j+1

(
t− Tj

Tj+1 − Tj

)2

.
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Let the process x(t), t ∈ [T1, Tn+1], be formed by the set of independent Brownian
bridges connecting aj to ai+1 within time interval [Tj , Tj+1], j = 1, . . . , n. Then, the
total mean occupation time of space has density

h(x) =
1

Tn+1 − T1

n∑
j=1

∫ Tj+1

Tj

ϕ(x | µj(t),Σ∗j (t))dt. [7.24]

The variances of measurement errors σ2
j are generally specified and one only has

to estimate the diffusion coefficient σ2 to compute the occupation time density.

The following trick was used to build a simple conditional likelihood for data.
Assume that n is even, then one can prove that observations x(T2k), k = 1, . . . , n/2,
conditional on the values of observations x(T2k−1), k = 1, . . . , n/2, are independent
Gaussian random vectors with mean vectors µ2k−1(T2k) and covariance matrices
Σ∗2k−1(T2k). Hence, we can get an estimate σ̂2 by maximizing the following
likelihood:

n/2∏
k=1

ϕ(a2k | µ2k−1(T2k),Σ∗2k−1(T2k)).

The estimation of density h can be performed with standard numerical methods
approximating the integral form in Equation [8.24]. This approach was compared to
kernel methods considering observed locations as i.i.d. random vectors drawn from h,
and was proven to be much more efficient since it accounts for measurement errors
and temporal dependencies between observed locations. Moreover, the first approach
yields more realistic domains for level sets of h.

Extension to further movement dynamics

Beyond the Brownian bridge, there exists today a wide range of literature about
more general (and more realistic) diffusion bridges in R1 and Rd related to some
specific stochastic differential equations of the form:

dx(t) = f(t,x)dt+ σ(t,x)dw,

driven by a d-dimensionnal Brownian motion w(t) and a vectorial drift function f .

There are many results about the characterization (in distribution as well as in a
path-wise sense) of these diffusions when they are considered conditionally on their
values x(Tj) = aj at times Tj , j = 1, 2. These results are however more complicated
to obtain since they are grounded on sophisticated tools such as the Girsanov theorem.
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7.4.2. Movements with Jumps, Including Mathematical Preliminaries

Thereafter, we assume that there exists a complete probability space (Ω,F,P) with
a filtration (or history) F = (Ft)t≥0 such that processes are F-adapted, stopping times
refer to F and martingales to (F,P). We shall neither develop the classical theory of
the predictable σ-algebra nor insist on other definitions such as predictable processes.
One has to know that a process with everywhere càglàd paths (i.e. left continuous with
right limits) are predictable. We also adopt standard notations for a process X(t) such
as X(t−) = lims↑tX(s) and ∆X(t) = X(t)−X(t−). For càdlàg processes X , the
continuous part is defined as Xc(t) = X(t)−

∑
s≤t ∆X(s).

Point processes and predictable projections

In what follows, an 1D temporal point process N(t) is given by a strictly
increasing sequence of stopping times (Ti)i≥0 with the convention that T0 = 0. The
associated counting process is defined as N(t) = Σi>01{Ti≤t}. Under this definition
N is adapted. Moreover, it is assumed to be a simple point process in the sense that
all jumps are only 1-valued.

As an adapted increasing process, N is a submartingale (i.e.
E(N(t)|Fs) ≥ N(s); for all t ≥ s) and by the Doob-Meyer Theorem [PRO 05],
there exists an increasing predictable process Ñ(t) such that M(t) = N(t)− Ñ(t) is
a martingale. Ñ(t) is called the predictable compensator of N(t). Theoretically, it is
defined as a conditional expectation with respect to the predictable σ-field. In most
interesting cases, Ñ(t) is almost surely absolutely continuous with respect to the
Lebesgue measure with a random density function λ(t), called the intensity function,
that is Ñ(t) =

∫ t
0
λ(s)ds.

When the filtration reduces to natural history of the processN(t), the intensity can
be deduced as follows (see [DAL 88] for details): If regular versions Gi+1(dt|FTi) of
the conditional distribution functions of interval lengths Di+1 = Ti+1−Ti exist, then
Ñ(t) = Σi>0 Λi(t), with

Λi+1(t) =

{
0 if t ≤ Ti∫ (t−Ti)∧Di+1

0

Gi+1(ds|FTi )
1−Gi+1(s−|FTi )

if t > Ti.
[7.25]

If Gi(dt|FTi) � dt, i ≥ 1, then one can paste the different pieces into a single
formula Ñ(t) =

∫ t
0
λ(s)ds. As we shall see below, this expression is largely used in

survival analysis, where Λi(t) stands for the cumulative hazard function of the random
variable Di and its derivative is the hazard function.

For filtrations richer than the natural history, the calculation of the compensator is
generally out of reach, but it conserves the same interpretation, namely the best
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cumulative predictor of the jumps of N . Authors generally assume some specific
forms for the intensity process grounded on relevant hypotheses for the application
domain of interest, because in many interesting cases, the form of the compensator
uniquely determines the probability distribution underlying the point process N(t).
For example a deterministic continuous compensator refers to a Poisson processes
(see an example of sample paths for N and Ñ , and the associated compensating
process M in Figure 8.9).

A useful and universal property, under the natural history, is that a simple point
process N with continuous and a.s. unbounded compensator Ñ undergoing the
random time change Ñ−1(t), yields a standard homogeneous Poisson process
N∗(t) = N(Ñ−1(t)). A partial converse is that a standard Poisson process
N∗(t) =

∑
i>0 1{T∗

i
≤t} and a positive function λ(t) jointly give rise to a Poisson

process N(t) =
∑
i>0 1{Ti≤t} of intensity λ(t) with Ti =

∫ T∗i
0

λ(s)ds = Λ(T ∗i ).

Generalization to multivariate and marked point processes

A d-dimensional point process N(t) = (N1, . . . , Nd)(t) is defined similarly as
above by a probability space with d sequences of stopping times (T ji ), j = 1, . . . , d,
i ≥ 0, with corresponding vectorial compensator Ñ(t) = (Ñ1, . . . , Ñd)(t) and
martingales M j(t) = (N j − Ñ j)(t).

However, in the context of movements with random jump sizes, we need a wider
generalization, namely the marked point processes and their dual predictable
projections [JAC 75]. We avoid details of the theory by simply restricting our
presentation of marked point processes within the following framework. A sequence
of random vectors (Ti, εi)i≥0 taking values in R+ × Rd with Ti < Ti+1 defines a
random measure N(dt, dx) =

∑
i δ(Ti,εi). A stochastic machinery similar than above

can be developed to enable us to assert that there exists a predictable random measure
(on an extended probability space) Ñ(dt, dx) such that for every predictable process
Y (s, x), the process MY (t) =

∫ t
0

∫
Rd Y (s, x)(N − Ñ)(dt, dx) is a martingale.

In the case of a filtration corresponding to the natural history, a formulation
similar to [8.25] gives the predictable projection, by replacing the previous
conditional probability function Gi+1(dt|FTi) by the distributions
Gi+1(dt × dx|FTi) of the variable (Ti+1 − Ti, εi+1) conditionally on FTi . More
precisely, we have Ñ(dt, dx) = Σi>0Λi(dt, dx), with

Λi+1(dt, dx) =
Gi+1(dt− Ti, dx|FTi)

Gi+1([t− Ti,∞]× Rd|FTi)
1{Ti<t≤Ti+1}.

Example 1

In the case of an 1D point process, let us assume that Gi+1(ds|FTi) is the Weibull
distribution W (α, β), with hazard function h(t) = βαβtβ−1 and cumulative hazard
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function H(t) = (αt)β . Parameters α and β are the scale and shape characteristics.
According to Equation [8.25], the compensator is written Ñ(t) = αβ(

∑n
i=1(Ti −

Ti−1)β + (t− Tn)β) for Tn < t ≤ Tn+1.

This compensator is stochastic since its expression depends on the stopping times
Ti. Actually,N is a renewal process and it is not a Poisson process, unless β = 1 since
for that case Ñ(t) = αβt is deterministic.

Example 2

We now consider the analogous Poisson process with intensity λ(t) = βαβtβ−1.
Thus, for any interval I = [τ1, τ2], the number of point events N(I) in I is Poisson
distributed with parameter Λ(I) =

∫ τ2
τ1
λ(s)ds = αβ(τβ1 − τβ2 ). In addition, given

the number of point events N(I) = k, its realization {Y1, . . . Yk} within I , are i.i.d
random variables with probability density g(t) = β tβ−1

τβ2 −τ
β
1

1{τ1≤t≤τ2}.

For simulation purpose, note that Yj has the same distribution as
(U(τβ2 − τ

β
1 ) + τβ1 ), where U is uniformly distributed over [0, 1]. Note also that the

time transformation Λ−1(t) makes N∗(t) = N(Λ−1(t) to be a standard Poisson
process. Observing that D∗i+1 = T ∗i+1 − T ∗i is exponentially distributed with rate 1,
one can prove that the inter-event length time Di+1 = Ti+1 − Ti, conditionally on Ti
(or T ∗i ), has the following survival function:

Si+1(t) = exp{−αβ((Ti + t)β − T βi )} , t ≥ 0.

This formula states that Ti+1 conditionally on the event Ti+1 > Ti behaves as a
Weibull distributed random variable Y ∼W (α, β), conditioned by the event Y > Ti;
this is the memory loss property of a Poisson process. Figure 8.9 illustrates sample
paths for N, Ñ and M for parameter values α = 1 and β = 1.2.

Stochastic integrals for purely discontinuous martingales

In the context of point processes, stochastic integration reduces to path-wise
integrals (in the sense of Stieltjes-Lebesgue integrals for bounded variation
integrands), but nevertheless requires care. For sake of completeness, let us first
recall that a semimartingale X(t) is defined by the identity X(t) = M(t) + A(t),
where M(t) is a local martingale and A(t) is a locally bounded variation process. For
any semimartingale X , one can define its quadratic variation process
[X,X](t) = X2(t) − 2

∫ t
0
X(s−)dX(s), which is also a locally bounded variation

process and satisfies ∆[X,X](t) = (∆X(t))2. The continuous part of [X,X] is
defined by [X,X]c(t) = [X,X](t) −

∑
0≤s≤t(∆X(s))2. The quadratic co-variation

process of two semimartingales is defined by duality as
[X,Y ](t) = ([X + Y,X + Y ] − [X,X] − [Y, Y ])/2, and similarly satisfies
∆[X,Y ](t) = ∆X(t)∆Y (t).
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Figure 7.9: Left: Counting Poisson process N(t) of Example 2 (broken line) and its
compensator Ñ(t) = tβ (continuous line) with α = 1 and β = 1.2. Right: The

corresponding compensating martingale M(t) = (N − Ñ)(t).

For a simple counting process N , we have [N,N ](t) = N(t). More generally
[X,X](t) =

∑
s≤0 ∆X2(s) holds for any adapted process X with locally bounded

variation, so that [X,X](t) ≡ 0 if in addition X is continuous. In fact, the machinery
of stochastic calculus intervenes only when the martingale component M has a non-
purely discontinuous part (i.e. [M c,M c] 6= 0).

Point processes, compensators and martingales

We recall that if M(t) = N(t) − Ñ(t) denotes the martingale compensating the
jumps of a simple point process N , then any adapted, integrable predictable (in
particular left continuous) f(t), gives rise to a martingale Mf (t) =

∫ t
0
f(s)dM(s).

These processes are also purely discontinuous martingales and their quadratic
co-variation processes satisfy the following formula
[Mf ,Mg](t) =

∫ t
0
f(s)g(s)dN(s). As a by-product, we see that [Mf ,Mg](t) is

compensated by
∫ t

0
f(s)g(s)dÑ(s), so that for t ≥ s, we have:

E(Mf (t)Mg(t) | Fs) = E

(∫ t

0

f(u)g(u)dÑ(u) | Fs
)
.

This formula is particularly appealing for deterministic functions f and g and/or handy
expressions of the compensator Ñ(dt) to explicitly calculate the covariance functions.
Figure 8.10 shows two examples of 2D-trajectories whose coordinates are correlated
martingales defined by stochastic integrals as above.
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Figure 7.10: Realization of 2D martingales Xi(t) =
∫ t

0
fi(s)d(N − Ñ)(s),

i ∈ {1, 2}, with f1(t) = 1 + cos(t) and f2(t) = 0.5− 2 sin(3t) (left panel), and
f1(t) = cos(0.3t) and f2(t) = 2 sin(0.3t) (right panel).

Example 3: Stochastic differential equations with impulsions
We now illustrate an other type of dynamical systems based on stochastic

differential equations driven by compound point processes via a particular but
nevertheless generic example for many dynamics.

We consider an autonomous system undergoing random shocks at random times.
For x = (x1, x2), we consider the quadratic function C(x) = x2

1 + βx2
2 on the plane

R2. The level curves of C are either ellipses (when β > 0) or hyperbolas (when
β < 0). This is obvious for β > 0. For β < 0, let β = −ρ2, then the equation
C(x) = c can be written (x1− ρx2)(x1 + ρx2) = c, which reduces to u1u2 = c after
a linear transformation.

Besides, using classical tricks for ordinary differential equations (ODE), one can
prove that functions x(t) satisfying C(x(t)) = c are governed by the following
homogeneous linear ODE:

x′(t) = Ax(t), with x(0) = x∗ [7.26]

whose solution is x(t) = eAtx∗. More explicitly,

– if β = ρ2 > 0, we have A =

(
0 −ρ2

1 0

)
and the solution of ODE [8.26] is:

x1(t) = x∗1 cos(ρt) − x∗2ρ sin(ρt)
x2(t) = x∗1 sin(ρt)/ρ + x∗2 cos(ρt)
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– whereas for β = −ρ2 < 0, we get A =

(
0 −ρ
−1/ρ 0

)
, yielding the following

solution of ODE [8.26]:

x1(t) = x∗1(et + e−t)/2 + x∗2ρ(−et + e−t)/2
x2(t) = x∗1(−et + e−t)/(2ρ) + x∗2ρ(et + e−t)/2

Next, let us consider the marked point process
∑
i>0 δ(Ti,εi) in R+ × R2, and the

bi-dimensional stochastic differential equation (SDE):

dz(t) = A(z(t−))dt+ dM(t) [7.27]

where M(t) =
∑
i>0 εi1{Ti≤t}. The sequence (εi)i≥1 is formed by i.i.d. elements

and is independent of (Ti)i≥1.

The solution of this SDE consists in a particle trajectory formed by a sequence of
disjoint curve arcs, each being a solution of Eq. [8.26]: at random times Ti, the particle
jumps by a size εi from its present orbit at a new location, initiates a new orbit, and so
on.

Figure 8.11 illustrates sample paths for both ellipsoidal and hyperbolic orbits,
depending on the sign of β, with standard Gaussian variables εi.
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Figure 7.11: Realizations of path obtained with an SDE with jumps (Example 3).
Left: Ellipsoidal orbits (β = 2). Right: Hyperbolic orbits (β = −0.7).
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When are these stochastic differential equations PDMP?

As seen earlier in this chapter and the introductory chapter, piecewise deterministic
Markov processes (PDMP) introduced by M.H.A Davis [DAV 84] enrich the usual
classes of Markov Processes (diffusions, jump processes,...) by allowing a part of
determinism in paths while inheriting the appealing Markovian properties [COS 08].
PMDP are time homogeneous Rd-valued processes x(t) with càdlàg sample paths.

PDMPs can be sequentially constructed via an increasing sequence of stopping
times (Tn)n≥0 with T0 = 0 and x(0) = x0. For x(Tn) = xn and t ∈ [Tn, Tn+1[, the
process x(t) obeys a deterministic rule, e.g. an ODE dx(t) = V (x(t))dt, governed
by a regular vector field V . Then, conditionally to the past FTn , the lifetime
Dn+1 = Tn+1 − Tn has hazard function λ(s) = h(x(Tn + s)), where h is a
non-negative bounded measurable function on Rd. At time Tn+1, the process x(t)
jumps to a state x(Tn+1) = x(Tn+1−) + εn+1, in accordance with a probability
transition Q(dε|x(Tn+1−)). The triplet (V, h,Q) characterizes entirely the
probability distribution of the PMDP. Note that when h satisfies
< ∇h(x), F (x) >≡ 0, for all x, i.e. h is a first integral for dynamical system, then
λ(s) is constant on the deterministic parts of paths and therefore the Dn are
exponentially distributed.

Piecewise deterministic processes presented in this paper are based on a little
more general marked point processes N(dt, dx) =

∑
i≥0 δ(Ti,εi) and so are neither

Markovian nor time homogeneous in general and, therefore, are not PDMP in
general. For the class of processes developed here to be PDMP, it is sufficient that the
conditional cumulative intensities are separable measures in dt and dx and have the
following form:

Λi(dt− Ti, dx) = h(x(Ti + t))dt×Q(dx|x(Tn+1−)).

7.4.3. The Doléans Dade Exponential Semimartingales

The following theorem is borrowed from Protter [PRO 05] and is a consequence
of the change of variables theorem as regards to Ito calculus for semimartingales.

THEOREM 7.1.– If X is a semimartingale with X(0) = 0, then there exists a unique
semimartingale Z satisfying the equation dZ(t) = Z(t−)dX(t), with Z(0) = 1
which is given by:

Z(t) = exp(X(t)− 1
2 [X,X]c(t))

∏
s≤t

(
(1 + ∆X(s)) exp−∆X(s)

)
. [7.28]

The solution Z(t), usually denoted EX(t), is called the stochastic (or Doléans
Dade) exponential of X . This theorem encompasses many useful results and
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applications. The formula reduces a lot for locally bounded variation processes X ,
since in this case [X,X]c(t) ≡ 0 implies that

Z(t) = expX
c(t)
∏
s≤t

(1 + ∆X(s))) .

Under a mild integrability condition, if X(t) is a martingale, then Z(t) is also a
martingale. A multivariate version of the theorem exists [JAC 82] and corresponds to
the analog of deterministic linear differential equations dZ(t) = Z(t−)dX(t) with a
matrix process A and a vector semimartingale X .

In what follows, we present several applications of exponential martingales.

Example 4: Deterministic semimartingales

Theorem 8.1 includes extensions of the case of deterministic homogeneous linear
differential equations. For instance, for any d × d matrix A, there exists a unique
solution Z(t) = expAt z0 to equation dZ(t) = AZ(t)dt, with Z(0) = zo ∈ Rd,
taking here the deterministic matrix semimartingale X(t) = At.

Example 5: Cumulative hazard function

The probability distribution function F (t) = P (T ≤ t) and the survival function
S(t) = 1 − F (t) of a non-negative random variable T , with dS(t) = −dF (t), are
monotonic functions and have bounded variations. The cumulative hazard function
Λ(t) =

∫ t
0

dF (s)
1−F (s−) satisfies the equation dΛ(t)(1− F (s−)) = d(F (s)). Conversely,

given a positive increasing function Λ with Λ(0) = 0, there exists a unique function S
with S(0) = 0, which satisfies dS(t) = −S(t−)dΛ(t). Equation [8.28] implies that
S satisfies:

S(t) = 1− F (t) = exp−Λc(t)
∏
s≤t

(1−∆Λ(s)) .

Note that the absolutely-continuous case dΛ(t) = λ(s)ds yields S(t) = e
−
∫ t
0
λ(s)ds

.

Example 6 : Survival analysis

Survival analysis in statistics is based on the simple case of a simple point process
with at most one event at time T . Let S(t) and Λ(t) be respectively the survival and
cumulative hazard functions of T ; then according to formula [8.25], the associated
compensating martingale is written M(t) = 1{T≤t}−

∫ t
0

1{s<T}λ(s)ds = 1{T≤t}−
Λ(t ∧ T ).

Since M is a pure jump martingale, with [M,M ]c(t) ≡ 0 and
M c(t) = −Λ(t ∧ T ), its exponential is also a pure jump martingale and satisfies:
Z(t) = exp−Λ(t∧T )

(
1 + 1[T,∞[(t)

)
= S(t ∧ T )

(
1 + 1[T,∞[(t)

)
.
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For statistical purposes, we have however to deal with a little more sophisticated
exponential martingale. Assume for example that T has hazard functions λ0(t) under
probability P0 and λθ(t) under probability Pθ, such that λθ(t) = µθ(t)λ0(s). Now,
if we consider the P0 martingale Xθ(t) =

∫ t
0
(µθ(s) − 1)dM0(s), we find that its

stochastic exponential Zθ(t) = exp

∫ t
0

log(µθ(s))dN(s)−
∫ t
0

(µθ(s)−1)λθ(s)ds is also a P0

martingale that exactly corresponds to the likelihood ratio Lθ(t) = E(dPθdP0
|Ft) =

fθ(t)
1{T≤t}(1− Fθ(t))1{T>t} .

This construction is in fact a major key for dealing with more general statistical
contexts (see Section 8.4.4 ).
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Figure 7.12: Sample paths of 2D stochastic exponentials Z(t) = E(M(t)) (see
Equation [8.28]) driven by compensating martingales Mj(t); j = 1, 2, based on a

standard Poisson process N(t). Left: M1(t) =
∫ t

0
cos(s)(dN(s)− ds) and

M2(t) = −
∫ t

0
sin(s)(dN(s)− ds). Right: M1(t) =

∫ t
0
(1 + cos(s))(dN(s)− ds)

and M2(t) =
∫ t

0
(1− sin(s))(dN(s)− ds).

7.4.4. Statistical Issues

General case

We present here an important application of the exponential semimartingale
theorem allowing a statistical approaches for marked point processes and related
models such as PDMPs. It is a sort of Girsanov theorem characterizing the ratio of
probability measures. Given two equivalent probability measures P and Q on some
complete filtration F = {Ft}t≤0, we already knows that the Radon-Nycodym
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derivative Z(ω) = dP
dQ is a positive Q-integrable random variable implying therefore

that the process Z(t) = E(Z|Ft) is a positive uniformly integrable martingale that
equals dP|Ft

dQ|Ft
, such that Z(t) corresponds to a ratio of likelihoods.

In a statistical framework, considering a parametric set of probabilities (Pθ, θ ∈ Θ)
equivalent to Q, such that dÑθ(t) = µθ(t)dÑ(t), where Ñθ and Ñ are the respective
compensators of N , one may expect to find , under some mild conditions, a particular
Q-martingale Wθ(t) =

∫ t
0
ρθ(s)d(N − Ñ)(t) such that the likelihood ratio Zθ(t)

corresponds to the positive stochastic exponential of Wθ(t). Indeed, one can promptly
and heuristically prove that it is true (and only true) for the process ρθ(t) = λθ(t)−1.

In the context of multivariate/marked point processes, Jacod [JAC 75] gives a plain
formula for the Radon-Nycodym derivative dP|Ft

dQ|Ft
under the natural filtration. This

formula corresponds to the solution of the Doléan Dade equation for the martingale
Wθ(t).

An Example

The statistical approach proposed above is applied here to the process presented
in Example 3 of Section 8.4.2, which is piecewise driven by an ODE and randomly
jumps at times Ti with jump amplitudes εi; in other words, this process statisfies the
stochastic differential equation: dX(t) = V (X(t−))dt+

∑
i εiδTi .

Among the many potential measurements of the movement (eg length, kinetic
energy,...), let us take the travel length L as a movement characteristic of a particle on
orbits. For a particle starting from x0 at time t = 0, this is defined by:

L(t,X0) =

∫ t

0

|V ((X(s))|ds.

On one hand, let us assume that the random measure N(dt, dx) =
∑
i δ(Ti,εi) has

under probability Q the conditional intensities:

Λi(dt, dx | FTi) = dt1{Ti≤t<Ti+1} × ϕ(x|0, I2)dx,

where ϕ(x|m,Σ) stands for the Gaussian density with mean m and covariance Σ in
R2. In that case we obtain Ñ(dt, dx) = dtϕ(x|0, I2)dx, meaning that N(dt, dx) is a
Poisson measure under Q.

On the other hand, let us assume that under Pθ, the conditional intensities depends
on paths as follows:

Λi,θ(dt, dx | FTi) = αhβ1
(t− Ti, X(Ti))1{Ti≤t<Ti+1}dt× ϕ(x|mθ(t), I2)dx,
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where for Ti ≤ t < Ti+1, θ = (α, γ, β1, β2) and γ = (γ1, γ2), we define:

hβ1(s,X0)) =
d

ds
Lβ1(s,X0)

mθ(t) = γ Lβ2(t− Ti, X(Ti)).

The function hβ(s,X0), should be interpreted as the hazard function of the Weibull
distributionW (1, β) related to the positive travel length variableL on the orbit starting
from X0.

The previous equations ultimately tells that Ñθ(dt, dx) = λθ(t, x)Ñθ(dt, dx),
with

λθ(t, x) = α
∑
i≥0

hβ1
(t− Ti, X(Ti))

exp−
1
2 [<γ,γ>L2β2 (t−Ti,X(Ti))−2<x,γ>Lβ2 (t−Ti,X(Ti))] 1{Ti≤t<Ti+1}.

Next, for the sake of simplicity, let us suppose that the process is observed in the
random time interval [0, Tn], such that the likelihood ratio corresponds to the
stochastic exponential of the Q martingale
Wθ(t) =

∫ t
0

∫
R2(λθ(s, x) − 1)(N − Ñ)(ds, dx). According to formula [8.28], the

log-likelihood is equal to:

log(Zθ(Tn)) = −
∫ Tn

0

∫
R2

(λθ(s, x)− 1)Ñ(ds, dx)

+

∫ Tn

0

∫
R2

log(λθ(s, x))N(ds, dx).

= −α

(
n−1∑
i=0

Lβ1(Ti+1 − Ti, X(Ti))

)
− Tn + n log(α)

+

n−1∑
i=0

log(hβ1(Ti+1 − Ti, X(Ti+1)))

−1

2
< γ, γ >

n−1∑
i=0

L2β2(Ti+1 − Ti, X(Ti+1))

+

n−1∑
i=0

< γ,∆X(Ti+1) > Lβ2(Ti+1 − Ti, X(Ti+1)).

One can therefore easily derive the set of equations for the maximum likelihood
estimate (MLE) θ̂ and apply a classical optimization procedure. As an illustration, we
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deal here with the simple case where the parameters β1 and β2 are known, which
allows us to get explicit formulas for the MLE of α and γ = (γ1, γ2):

α̂ =
n∑n−1

i=0 L
β1(Ti+1 − Ti, X(Ti))

γ̂ =

∑n−1
i=0 ∆X(Ti+1)Lβ2(Ti+1 − Ti, X(Ti+1))∑n−1

i=0 L
2β2(Ti+1 − Ti, X(Ti+1))

.

As a perspective, one can expect to use asymptotic techniques for discrete time
indexed martingales in order to derive the asymptotic behaviors (in almost sure and
in distribution senses) of these estimators and, therefore, perform sensible null
hypothesis testing such as γ = 0 and α = α0.

7.5. Conclusion

This chapter gave an introduction to spatio-temporal PDMPs used to model
population dynamics. Spatio-temporal PDMPs offer the possibility to build flexible
models and achieve relatively realistic and consistent inferences. Thus, we presented
three different modeling frameworks corresponding to three resolutions, namely the
population, the metapopulation and the individual. We have seen that, depending on
the dynamics of interest, the jumps in the PDMP can correspond to long-distance
dispersal events, new introductions, or significant shifts in individual behaviors.

In the examples of models presented above, the spatio-temporal dependencies are
contained in the flow function, whereas jumps are independent and identically
distributed. However, for populations whose individuals can be transported in groups
[SOU 11, SOU 14a], jumps should be correlated in space and time. For instance, in
the metapopulation model of Section 8.3, a source patch could release a group of
spores transported by wind towards a set of nearby patches. Such a process could
lead to the simultaneous infection of several aggregated patches. Hence, developing
PDMPs with dependent random jumps would be interesting for better taking into
account specificities of some population dynamics. Moreover, it would be also
challenging from the perspective of model construction, simulation and inference.
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