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Abstract. This technical report presents the MCMC algorithm with Hamil-
tonian sampler and provides several applications of this algorithm. It es-
pecially shows how to apply MCMC with Hamiltonian sampler to estimate
the parameters and the latent variables of a spatial GLMM.
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1 Introduction

Markov chain Monte Carlo (MCMC) algorithms are used to sample from
target probability distributions. They provide realizations of Markov chains
that have the target distributions as their equilibrium distributions. After
a transitory set of iterations, one (sub-)samples the states of the chain to
obtain a sample from the target distribution.

In Bayesian statistics, MCMC methodology is often used to draw sam-
ples in the joint posterior distribution of parameters (and latent variables).
This methodology is particularly useful when one handles hierarchical mod-
els whose likelihoods are written as integrals which cannot be analytically
calculated.

An MCMC algorithm is based on repeated stochastic jumps in the space
of parameters and latent variables. Several approaches have been proposed
to perform the jumps. The two main approaches are the so-called Gibbs
sampler (Casella and George, 1992) and the Metropolis-Hastings sampler
(Chib and Greenberg, 1995). The Gibbs sampler consists of drawing new
states for the parameters and latent variables by generating values from the
conditional distribution of the parameters/variables to be updated given the
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other parameters/variables and given data. The Metropolis-Hastings sam-
pler consists of drawing new states for the parameters and latent variables
by generating values from an arbitrary proposal distribution and accept-
ing/rejecting these new values with probabilities depending on “how much
the new values increase/decrease the value of the posterior distribution”
(the acceptance probabilities depend also on a correction compensating the
choice of the proposal distribution).

An alternative sampler is the Hamiltonian sampler first introduced in the
statistical physics literature (Duane et al., 1987), and applied afterwards to
statistical inference issues; see Neal (2011), Girolami and Calderhead (2011)
and references therein. The Hamiltonian sampler can be viewed as a spe-
cific Metroplis-Hastings sampler in which the proposal is based on two key
components: (i) some auxiliary random variables and (ii) an Hamiltonian
dynamics applied to the parameters/variables to be updated and to the aux-
iliary variables. The auxiliary random variables allow the updating process
to be stochastic. The (deterministic) Hamiltonian dynamics allows large
jumps that are accepted with high probability.

Theoretical justification of the Hamiltonian sampler and its use in MCMC
can be found in Neal (2011) and Girolami and Calderhead (2011). In this
technical report, we show how MCMC with Hamiltonian sampler, called
Hamiltonian Monte Carlo (HMC), is defined and applied. The first three
applications presented below are toy examples. The last application is the
estimation of the parameters and the latent variables of a spatial GLMM
(Diggle et al., 1998). Our objective, beyond this technical report, is to infer
parameters and latent variables of dispersal models which can be viewed as
extensions of spatial GLMM. Such a model was built (and estimated via
an MCMC algorithm with Metropolis-Hastings algorithm) in Bousset et al.
(2015) to infer the spread of phoma canker. The use of HMC in such a case
should allow us to significantly reduce computation times required for the
estimation and, therefore, a finer exploration of model specifications (be-
ing able to rapidly fit the dispersal model to data should allow us to test
numerous model specifications).
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2 MCMC with Hamiltonian sampler

Let Y ∈ Rn denote a vector of response variables with distribution Y 7→
p(Y | θ), where θ ∈ Rm is a set of parameters with prior distribution θ 7→
π(θ). The posterior distribution of θ is:

p(θ | Y ) =
p(Y | θ)π(θ)

p(Y )
=

p(Y | θ)π(θ)∫
Rm p(Y | η)dπ(η)

.

The MCMC algorithm with Hamiltonian sampler is given by Algorithm 1.
It has to be tuned with the probability distribution q of an auxiliary vec-
tor A of random variables, and with a time τ at which the Hamiltonian’s
equation is solved at each iteration. This algorithm samples in the joint
distribution p(θ | Y )q(A) whose factorized form implies that the subsample
corresponding to θ is drawn in p(θ | Y ).

Typically, q is a normal distribution with zero mean vector and identity
covariance matrix. Time τ partially governs the amplitude of the jumps and
has to be tuned to obtain adequate acceptance probabilities (neither to high
nor to low). The solution of Equation (1) at time t = τ is typically obtained
numerically with the leapfrog method (Neal, 2011).

Algorithm 2 details the implementation of the leapfrog algorithm which
alternates movements for the parameter vector and movements for the aux-
iliary vector in the directions ∇z1H(z) and −∇z2H(z), respectively, where
∇z1H(z) (resp. ∇z2H(z)) denotes the gradient of H with respect to the
components of z1 (resp. z2).

The sections below illustrate the implementation of the MCMC algo-
rithm with Hamiltonian sampler in various settings. In the last application,
which deals with a spatial hierarchical model, we will use for q a more sophis-
ticated distribution than the standard normal distribution, and we will use
for solving Equation (1) a more sophisticated algorithm than the leapfrog
algorithm.
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Algorithm 1 MCMC algorithm with Hamiltonian sampler.

initialization: set a value for θ(0)

for k = 1, 2, . . . do the following:

1: draw an auxiliary vector of variables A ∈ Rm with probability distri-
bution A 7→ q(A)

2: solve the following Hamiltonian’s equation at time t = τ (i.e. compute
the state z(τ)):

dz

dt
= J∇H(z), (1)

where the initial condition is z(0) = (θ(k−1), A), z = (z1, z2) ∈ Rm ×
Rm,

H(z) = − log{p(z1 | Y )q(z2)},

J =

(
0m,m Im,m
−Im,m 0m,m

)
,

0m,m is the zero m ×m-matrix, Im,m is the identity m ×m-matrix,
and ∇H is the gradient of H (the gradient of H is the vector of size
2m whose component j is the partial derivative of H with respect to
the j-th component of z, denoted by z[j], i.e. ∂H/∂z[j])

3: set θ∗ = z1(τ) and A∗ = z2(τ) . θ∗ is a candidate value for θ
4: compute the acceptance probability α:

α = min

{
1,

p(θ∗ | Y )q(A∗)

p(θ(k−1) | Y )q(A(k−1))

}
= min

{
1, exp{H((θ(k−1), A(k−1)))−H((θ∗, A∗))}

}
5: draw a uniform random variable U over [0, 1] and update θ as follows:

if U ≤ α then
set θ(k) = θ∗

else
set θ(k) = θ(k−1)

end if

end for

For m = 1, Equation (1) can be written:

{
dz1/dt = ∂H/∂z2

dz2/dt = −∂H/∂z1.
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Algorithm 2 Leapfrog algorithm for solving the Hamiltonian’s equation
(1) at time t = τ = Lε, where the positive integer L and the positive real
value ε determine the accuracy of the resolution and the amplitude of the
jump. Using the vocabulary of Hamiltonian dynamics, z1 and z2 are called
position and momentum, respectively.

make a half step for the momentum:

z2(ε/2) = z2(0)− (ε/2)∇z1H(z(0))

for i = 1, . . . , L− 1 do the following if L > 1:
set t = iε
alternate full steps for the position and the momentum:

z1(t) = z1(t− ε) + ε∇z2H(z(t− ε))
z2(t+ ε/2) = z2(t− ε/2)− ε∇z1H(z(t− ε/2))

end for
make a full step for the position:

z1(Lε) = z1(Lε− ε) + ε∇z2H(z(Lε− ε))

make a half step for the momentum:

z2(Lε) = z2(Lε− ε/2)− (ε/2)∇z1H(z(Lε− ε/2)).
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3 Sampling in a 2D normal distribution

We want to obtain, with the HMC algorithm, a sample {θ(1), . . . , θ(K)} from
the 2D-normal distribution with mean vector (0, 0) and covariance matrix
Σ = ( 1 0.8

0.8 1 ). The distribution q is set to the 2D-normal distribution with
mean vector (0, 0) and covariance matrix ( 1 0

0 1 ). Therefore, the function H
satisfies:

H((θ,A)) = − log{p(θ)q(A)}

p(θ) =
1

2π|Σ|1/2
exp

(
−θ
′Σ−1θ

2

)
q(A) =

1

2π
exp

(
−A

′A

2

)
,

where u′ is the transpose of vector u and |u| is the determinant of matrix u.
In this case, by setting z1 = θ = (θ1, θ2) and z2 = A = (A1, A2),

J∇H =

(
∇z2H
−∇z1H

)
=


∂H/∂A1

∂H/∂A2

−∂H/∂θ1
−∂H/∂θ2

 =

 A1

A2

−Σ−1θ

 ,

and

α = min

{
1,

exp{−(θ∗)′Σ−1θ∗/2− (A∗)′A∗/2}
exp{−θ′Σ−1θ/2−A′A/2}

}
,

where (θ,A) stands for the current value (θ(k−1), A(k−1)) of (θ,A) in the
MCMC.

Figure 1 gives a numerical example of the use of HMC for sampling in
the 2D normal distribution. For this example, we solved the Hamiltonian’s
equation (1) with the leapfrog algorithm tuned by ε = 0.3 and L = 20.
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Figure 1: Chain of length 200 obtained with the HMC algorithm designed
for sampling in the 2D normal distribution with mean vector (0, 0), vari-
ances equal to 1 and correlation equal to 0.8. The chain was initialized at
θ = (θ1, θ2) = (10, 5). Circles correspond to the states of θ at successive
iterations. The grey level of circles evolves with iterations; blackest circles
correspond to last iterations.
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4 Sampling in a normal spatial random field in-
corporated into a spatial GLMM

Independent Poisson random variables Y1, . . . , Yn with means exp(θ1), . . . , exp(θn)
are observed at locations x1, . . . , xn. The vector θ = (θ1, . . . , θn)′ is a nor-
mal random vector with mean vector (0, . . . , 0) and covariance matrix Σ
whose term (i, j) is equal to Σij = 3 exp(−3||xi − xj ||), where || · || is the
Euclidean distance. The locations x1, . . . , xn are independently drawn in
the unit square [0, 1]× [0, 1]. Figure 2 shows a realization of this model with
n = 18.

To simulate θ = (θ1, . . . , θn)′ given Y = (Y1, . . . , Yn)′, we apply the HMC
algorithm with q set to the standard nD-normal distribution. In this case,
the function H satisfies:

H((θ,A)) = − log{p(θ | Y )q(A)}
= − log p(Y | θ)− log p(θ) + log p(Y )− log q(A)

p(Y | θ) =

n∏
i=1

exp(θi)
Yi

Yi!
exp(−eθi)

p(θ) =
1

(2π)n/2|Σ|1/2
exp

(
−θ
′Σ−1θ

2

)
q(A) =

1

(2π)n/2
exp

(
−A

′A

2

)
.

In the expression of H, p(Y ) does not depend on (θ,A) and, consequently,
will affect neither ∇H nor α. Therefore, we do not need to give the expres-
sion of p(Y ). It follows, by setting z1 = θ and z2 = A:

J∇H =

(
∇z2H
−∇z1H

)
=

(
A

Y − exp(θ)− Σ−1θ

)
,

and

α = min

{
1,

exp{
∑n

i=1(Yiθ
∗
i − eθ

∗
i )− (θ∗)′Σ−1θ∗/2− (A∗)′A∗/2}

exp{
∑n

i=1(Yiθi − eθi)− θ′Σ−1θ/2−A′A/2}

}
.

where (θ,A) stands for the current value (θ(k−1), A(k−1)) of (θ,A) in the
MCMC.

Figure 3 gives a numerical example of the use of HMC applied to the
data set shown in Figure 2. For this example, we solved the Hamiltonian’s
equation (1) with the leapfrog algorithm tuned by ε = 0.1 and L = 20.
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Figure 2: Realization of the spatial GLMM with n = 18. Left: Loca-
tions of observation sites; the radii of circles are proportional to the value
of Y1, . . . , Yn. Right: Observations Y1, . . . , Yn versus values of the normal
random variables θ1, . . . , θn.
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Figure 3: Chains of length 2000 obtained with the HMC algorithm designed
for sampling in the normal random field incorporated in a spatial GLMM.
Each panel of this plot shows a projection of the chain over two dimensions
of θ. The chain was initialized at a value drawn in a normal vector with
mean vector (0, . . . , 0) and covariance matrix equal to 2 times the identity
matrix. Circles correspond to the states of θ at successive iterations. The
grey level of circles evolves with iterations; blackest circles correspond to
last iterations. In each panel, the red dot is the true value of θ.
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5 Sampling in the posterior distribution of param-
eters and latent variables of a spatial GLMM

Here, we consider the model described above but the number of observations
n is larger and the model parameters have also to be estimated.

5.1 Model

Given θ1, . . . , θn, the response variables Y1, . . . , Yn, which are observed at
locations x1, . . . , xn, are independent Poisson random variables with means
exp(θ1), . . . , exp(θn). The vector θ = (θ1, . . . , θn)′ is a normal random vector
with mean vector (β1, . . . , β1) and covariance matrix Σ(β2, β3) whose term
(i, j) is equal to Σij = β2 exp(−β3||xi − xj ||). The locations x1, . . . , xn are
regularly drawn in the unit square [0, 1] × [0, 1]. Moreover, β1, β2 and β3
have independent prior distributions; the prior of β1 is normal whereas the
priors of β2 and β3 are lognormal. Figure 4 shows a realization of this model
with n = 100 and β = (β1, β2, β3) = (3, 1, 5).
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Figure 4: Realization of the spatial GLMM with n = 100. Left: Loca-
tions of observation sites; the radii of circles are proportional to the value
of Y1, . . . , Yn. Right: Observations Y1, . . . , Yn versus values of the normal
random variables θ1, . . . , θn.
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5.2 Semi-separable HMC

To estimate latent variables θ and parameters β of the model described
above, we will use the procedure introduced by Zhang and Sutton (2014) who
sequentially update these unknowns for solving the hamiltonian dynamics,
and who propose (and justify) a normal distribution for q whose covariance
matrix depends on (θ, β). This procedure is called semi-separable HMC.

The motivation for using a covariance-varying normal distribution for q
is given by Girolami and Calderhead (2011): “The potential of [...] HMC
methodology may be more fully realized by employing transitions that take
into account the local structure of the target density when proposing moves
to different probability regions, as this may improve the overall mixing of
the chain. Therefore, rather than employing a fixed global covariance matrix
[...], a position-specific covariance could be adopted.”

Let A ∈ Rn denote the auxiliary vector for θ and B ∈ R3 the auxiliary
vector for β. Let the auxiliary vector

(
A
B

)
follow a normal distribution

with zero mean vector and with covariance matrix Ω(θ, β;x) (where x =
(x1, . . . , xn)), which is assumed to take the following block-diagonal form:

Ω(θ, β;x) =

(
ΩA(β;x) 0n,3

03,n ΩB(θ)

)
, (2)

where ΩA(β;x) and ΩB(θ) are the covariance matrices of A and B, respec-
tively. This block-diagonal form (where ΩA does not depend on θ and ΩB

does not depend on β) will allow simplifications in the expression of ∇H
which will provide a computational advantage.

12



Using assumptions on the model and the auxiliary vectors,

q(A,B | θ, β, x) = qA(A;β, x)qB(B; θ)

H(θ, β,A,B) =− log{p(θ, β | Y )q(A,B | θ, β, x)}
=− log p(Y | θ)− log p(θ | β)− log p(β) + log p(Y )

− log qA(A;β, x)− log qB(B; θ)

p(Y | θ) =
n∏
i=1

exp(θi)
Yi

Yi!
exp(−eθi)

p(θ | β) =
1

(2π)n/2|Σ(β2, β3)|1/2
exp

(
−(θ − β11n)′Σ(β2, β3)

−1(θ − β11n)

2

)
p(β) = φ(β1; b11, b12)×

1

β2
φ(log β2; b21, b22)×

1

β3
φ(log β3; b31, b32)

qA(A;β, x) =
1

(2π)n/2|ΩA(β;x)|1/2
exp

(
−A

′ΩA(β;x)−1A

2

)
qB(B; θ) =

1

(2π)3/2|ΩB(θ)|1/2
exp

(
−B

′ΩB(θ)−1B

2

)
,

where 1n is the unit vector of size n; u 7→ φ(u;µ, σ) = (2πσ)−1/2 exp(−(u−
µ)2/(2σ2)) is the density probability function of the normal distribution
with mean µ and standard deviation σ; and {bij : i = 1, 2, 3, j = 1, 2} are
parameters of the prior distribution of β; β1 has a normal prior distribu-
tions whereas β2 and β3 have log-normal prior distributions; a priori, the
components of β are independent.

In the expression of H, p(Y ) does not depend on (θ, β,A,B) and, con-
sequently, will affect neither ∇H nor α. Therefore, we do not need to give
the expression of p(Y ).

It follows, by setting z1 =
(
θ
β

)
and z2 =

(
A
B

)
:

J∇H =

(
∇z2H
−∇z1H

)

=


ΩA(β;x)−1A
ΩB(θ)−1B

Y − exp(θ)− Σ(β2, β3)
−1(θ − β11n) +∇θ log qB(B; θ)

∇β log p(θ | β) +∇β log p(β) +∇β log qA(A;β, x)

 ,

where the gradients∇θ log qB(B; θ),∇β log p(θ | β),∇β log p(β) and∇β log qA(A;β, x)
are specified in Appendix A.
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Since ∇z2H depends on (θ, β) and not only on (A,B) and ∇z1H depends
on (A,B) and not only on (θ, β), the Hamiltonian is non-separable2 and, con-
sequently, the leapfrog algorithm does not solve adequately Equation (1);
see Girolami and Calderhead (2011). Girolami and Calderhead (2011) pro-
posed a generalized leapfrog algorithm which has adequate properties but
which is time consuming according to Zhang and Sutton (2014). Neverthe-
less, when the matrix Ω(θ, β;x) satisfies Equation (2), the Hamiltonian is
semi-separable, and Zhang and Sutton (2014) proposed to solve Equation
(1) with the alternating block-wise leapfrog algorithm (ABLA) exploiting
the semi-separability property. This procedure is described below.

Let H1 and H2 denote the two following Hamiltonian energies:

H1(θ,A, β,B) = − log p(Y | θ)− log p(θ | β)− log qA(A;β, x)− log qB(B; θ)

H2(θ,A, β,B) = − log p(θ | β)− log p(β)− log qA(A;β, x)− log qB(B; θ).

Then, Equation (1) can be written:
dθ
dt = ∇AH1(θ,A, β,B)
dβ
dt = ∇BH2(θ,A, β,B)
dA
dt = −∇θH1(θ,A, β,B)
dB
dt = −∇βH2(θ,A, β,B),

(3)

where ∇AH1(θ,A, β,B) does not depend on θ, ∇BH2(θ,A, β,B) does not
depend on β, ∇θH1(θ,A, β,B) does not depend on A, and ∇βH2(θ,A, β,B)
does not depend on B. Therefore, the Hamiltonian system corresponding to
H1 (resp. H2) is separable with respect to (θ,A) (resp. (β,B)), and the non-
separable Hamiltonian system (3) is said to be semi-separable3. This system
can be numerically solved by sequentially applying the leapfrog algorithm
(i) to solve (with respect to (θ,A)) the separable sub-system corresponding
to H1 and (ii) to solve (with respect to (β,B)) the separable sub-system
corresponding to H2.

To sum up, Algorithm 3 describes the MCMC algorithm with Hamilto-
nian sampler adapted to a hierarchical model and a non-separable Hamil-
tonian system. Algorithm 3 reduces to Algorithm 1 when the Hamilto-
nian system is separable. As stated above, to obtain a valid MCMC, the

2This can also be viewed by noting that the Hamiltonian energy (θ, β,A,B) 7→
H(θ, β,A,B) cannot be written as the sum of a function of (θ, β) and a function of (A,B).

3The separability of both Hamiltonian systems corresponding to H1 and H2 can be
seen by noting that the function (θ,A) 7→ H1(θ,A, β,B) can be written as the sum of a
function of θ and a function of A, and the function (β,B) 7→ H2(θ,A, β,B) can be written
as the sum of a function of β and a function of B.
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system (4) in Algorithm 3 should not be solved with the leapfrog algo-
rithm. However, when the Hamiltonian system is semi-separable (i.e. when
q(A,B | θ, β) = q(A | β)q(A | θ)) one can use successive calls to the
leapfrog algorithm, that is to say the alternating block-wise leapfrog al-
gorithm (ABLA), described in Algorithm 4.

5.3 Application

We applied Algorithm 3 including Algorithm 4 to the data set shown on Fig-
ure 4 simulated with β = (3, 1, 5). We followed Zhang and Sutton (2014) to
choose the covariance matrices of the auxiliary vectors: ΩA(β;x) = Σ(β2, β3)
and ΩB(θ) = I3,3. We tuned the algorithm with L̃ = 20 and ε̃ = 0.1. Prior
parameters for βi were fixed at (bi1, bi2) = (0, 3), i = 1, 2, 3. We ran a chain
of length 2000. The initial value for θi was log(max(0.1, Yi)), i = 1, . . . , n.
The initial values for β1 and β2 were, respectively, the average and the vari-
ance of {log(max(0.1, Yi)) : i = 1, . . . , n}. The initial value for β3 was 1.
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Figure 5: Chains of length 2000 (left) and corresponding histograms (right)
obtained for β1, β2 and β3 with the semi-separable HMC algorithm designed
for sampling in the posterior distribution of latent variables and parameters
incorporated in a spatial GLMM. True values of parameters are indicated
in every panels by red lines.

16



0 500 1000 1500 2000

−
2

2
4

6

Iteration

θ
i

0 500 1000 1500 2000

−
2

2
4

6

Iteration

θ
i

0 500 1000 1500 2000

−
2

2
4

6

Iteration

θ
i

0 500 1000 1500 2000

−
2

2
4

6

Iteration

θ
i

0 500 1000 1500 2000

−
2

2
4

6

Iteration

θ
i

0 500 1000 1500 2000
−

2
2

4
6

Iteration

θ
i

0 500 1000 1500 2000

−
2

2
4

6

Iteration

θ
i

0 500 1000 1500 2000

−
2

2
4

6

Iteration

θ
i

0 500 1000 1500 2000

−
2

2
4

6

Iteration

θ
i

Figure 6: Chains of length 2000 obtained for 9 variables θis (among the 100
θis) with the semi-separable HMC algorithm designed for sampling in the
posterior distribution of latent variables and parameters incorporated in a
spatial GLMM. In each panel, the red line indicates the true value of θi and
the green line indicates the observed value of log Yi if Yi > 0.

17



Algorithm 3 MCMC algorithm with Hamiltonian sampler for hierarchical
models and non-separable Hamiltonian systems.

initialization: set a value for θ(0) and β(0)

for k = 1, 2, . . . do the following:

1: draw an auxiliary vector of variables
(
A
B

)
∈ Rm with probability dis-

tribution (A,B) 7→ q(A,B | θ(k−1), β(k−1))
2: solve the following Hamiltonian’s equation at time t = τ (i.e. compute

the state z(τ)):

dz

dt
= J∇H(z), (4)

where the initial condition is z(0) = (θ(k−1), β(k−1), A,B), z =
(z1, z2) ∈ Rm × Rm, and

H(θ, β,A,B) = − log{p(Y | θ)p(θ | β)p(β)q(A,B | θ, β)}

J =

(
0m,m Im,m
−Im,m 0m,m

)
,

3: set (θ∗, β∗) = z1(τ) and (A∗, B∗) = z2(τ)
4: compute the acceptance probability α:

α = min
{

1, exp{H((θ(k−1), A(k−1), β(k−1), B(k−1)))−H((θ∗, A∗, β∗, B∗))}
}

5: draw a uniform random variable U over [0, 1] and update θ as follows:

if U ≤ α then
set θ(k) = θ∗ and β(k) = β∗

else
set θ(k) = θ(k−1) and β(k) = β(k−1)

end if

end for
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Algorithm 4 Alternating block-wise leapfrog algorithm (ABLA) for solv-
ing, in the case of a hierarchical model, the Hamiltonian’s equation (3) at
time t = τ = L̃ε̃ with initial condition (θ, β,A,B)(0). The positive integer
L̃ and the positive real value ε̃ determine the accuracy of the resolution and
the amplitude of the jump. Here, leapfrog(u, h, L, ε) designates Algorithm
2 solving with the leapfrog method the Hamiltonian dynamics corresponding
to energy h, initialized at u, and tuned by L and ε.

for i = 1, . . . , L̃ do the following:
set t = iε̃
make a half step for (θ,A):

(θ,A)(t− ε̃/2) = leapfrog{(θ,A)(t− ε̃),
(θ,A) 7→ H1(θ, β(t− ε̃), A,B(t− ε̃)),
L = 1, ε = ε̃/2}

make a full step for (β,B):

(β,B)(t) = leapfrog{(β,B)(t− ε̃),
(β,B) 7→ H2(θ(t− ε̃/2), β(t− ε̃), A(t− ε̃/2), B(t− ε̃)),
L = 1, ε = ε̃}

make a half step for (θ,A):

(θ,A)(t) = leapfrog{(θ,A)(t− ε̃/2),

(θ,A) 7→ H1(θ, β(t), A,B(t)),

L = 1, ε = ε̃/2}.

end for
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A Derivatives required in Section 5

The i-th component of ∇θ log qB(B; θ) (i = 1, . . . , n) is:

∂

∂θi
log qB(B; θ) =− 1

2
tr

(
ΩB(θ)−1

∂ΩB(θ)

∂θi

)
+

1

2
B′ΩB(θ)−1

∂ΩB(θ)

∂θi
ΩB(θ)−1B

∂ΩB(θ)

∂θi
= 03,3.

The gradient of log p(θ | β) with respect to β satisfies:

∇β log p(θ | β) =

∂ log p(θ | β)/∂β1
∂ log p(θ | β)/∂β2
∂ log p(θ | β)/∂β3


∂ log p(θ | β)

∂β1
= (θ − β11n)′Σ(β2, β3)

−11n

∂ log p(θ | β)

∂β2
=− 1

2
tr

(
Σ(β2, β3)

−1∂Σ(β2, β3)

∂β2

)
+

1

2
(θ − β11n)′Σ(β2, β3)

−1∂Σ(β2, β3)

∂β2
Σ(β2, β3)

−1(θ − β11n)

∂ log p(θ | β)

∂β3
=− 1

2
tr

(
Σ(β2, β3)

−1∂Σ(β2, β3)

∂β3

)
+

1

2
(θ − β11n)′Σ(β2, β3)

−1∂Σ(β2, β3)

∂β3
Σ(β2, β3)

−1(θ − β11n)

∂Σ(β2, β3)

∂β2
=

1

β2
Σ(β2, β3) = exp(−β3D)

∂Σ(β2, β3)

∂β3
=−D ◦ Σ(β2, β3)

where D is the matrix of distances whose term (i, j) ∈ {1, . . . , n}2 is ||xi −
xj ||, and ◦ denotes the Hadamard product (element-by-element multiplica-
tion).
The gradient of log p(β) with respect to β satisfies:

∇β log p(β) =

 −(β1 − b11)/b212
−(log β2 − b21 + b222)/(β2b

2
22)

−(log β3 − b31 + b232)/(β3b
2
32)


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The i-th component of ∇β log qA(A;β, x) (i = 1, . . . , 3) is:

∇β log qA(A;β, x) =− 1

2
tr

(
ΩA(β;x)−1

∂ΩA(β;x)

∂βi

)
+

1

2
A′ΩA(β;x)−1

∂ΩA(β;x)

∂βi
A

∂ΩA(β;x)

∂β1
=
∂Σ(β1, β2)

∂β1
= 0

∂ΩA(β;x)

∂β2
=
∂Σ(β1, β2)

∂β2
∂ΩA(β;x)

∂β3
=
∂Σ(β1, β2)

∂β3
,

with ∂Σ(β1, β2)/∂β3 and ∂Σ(β1, β2)/∂β3 given above.
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