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Abstract: The method that we propose allows to reduce the dimension of the summary
statistics in approximate Bayesian Computation. It transforms the summary statistics into
point estimates of the parameters which are then used as new summary statistics. On a
toy example, we show that the dimension of the summary statistics and their handicaps
are problems that are not managed correctly by classical ABC procedures. The proposed
transformation leads to optimal results with regard to the posterior distribution, namely
similar results to the sufficient statistics.
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1 Introduction

Today, there exists a flourishing literature where mechanistic models are built to describe
and infer complex dynamics; see for instance Ovaskainen and Hanski (2004); Real and
Biek (2007); Soubeyrand et al. (2009) in population dynamics and Estoup et al. (2004)
in population genetics. Among these mechanistic models some are stochastic implicit
models: they can be used to generate data sets but the probability distribution of the state
variables is untractable (Diggle and Gratton, 1984). Approximate Bayesian Computation
(ABC) procedures have been especially developed to make Bayesian inference in the case
of such implicit models (Beaumont et al., 2002, 2009; Blum and François, 2010; Marjoram
et al., 2003; Sisson et al., 2007; Wegmann et al., 2009; Marin et al., 2011).
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The basic ABC procedure (ABC–rejection) is carried out as follows: (i) sets of param-
eters are independently simulated under prior distributions; (ii) for each set of parameters
a data set with the same structure than the observed data set is simulated under the im-
plicit model; (iii) the simulated parameters providing the simulated data sets closest to
the observed data set are retained to build the posterior distribution. The closeness of
the data sets is usually quantified with a distance between summary statistics computed
from observed and simulated data. The use of summary statistics to compare the data sets
in lower-dimension spaces (see e.g. Marjoram et al., 2003) may lead to difficulties in the
implementation of ABC (ABC–rejection and other ABC procedures). This is the topic of
the present article.

The presentation of the ABC–rejection procedure by Pritchard et al. (1999) in a popu-
lation genetics context marks the emergence of ABC methods; even if Rubin (1984) previ-
ously proposed this procedure (without mentioning the use of statistics) but his proposal
did not resound at that time. Since 1999, many improvements of the procedure concerning
the exploration of the parameter space or the derivation of the posterior distributions were
published. For instance, smoothing was used instead of acceptance/rejection (Beaumont
et al., 2002; Blum and François, 2010), regression models were incorporated in the proce-
dure (Beaumont et al., 2002; Blum and François, 2010), and iterative algorithms based on
Markov chains or importance sampling were proposed instead of the independent sampling
of the parameters (Marjoram et al., 2003; Beaumont et al., 2009; Wilkinson, 2008).

In the existing ABC procedures, another critical aspect for the accuracy of the infer-
ences concerns the choice of the summary statistics and the choice of the distance between
simulated and observed statistics. Because ABC procedures are applied to stochastic im-
plicit model which are analytically intractable, determining theoretically the set of minimal
sufficient statistics is cumbersome. In practice, when it is possible, a list of statistics ex-
pected to be strongly related with the unknown parameters is built based on the expertise
of the analyst. But when a previous knowledge is not available, the choice of the summary
statistics becomes a problem: some statistics may not be related to any parameter and
are un-informative, some statistics may carry the same information for the parameters and
are redundant. Several solutions have been already proposed to bear with some of these
difficulties, i.e. to transform statistics or to reduce the dimension of the statistics, mainly
trying to deal with the curse of dimensionality (the rate of convergence of the MSE criterion
decreases as the dimension of the statistics increases). For instance, Joyce and Marjoram
(2008) propose to select a subset of statistics based on relative ε-sufficiency; Wegmann
et al. (2009) propose to transform the statistics into the axes of a PLS regression; Nunes
and Balding (2010) propose to optimize the selection of summary statistics minimizing the
average square error of the posterior distribution of the parameter; Fearnhead and Prangle
(2010) propose a construction of summary statistics in a semi–automatic manner, optimal
summary statistics being the posterior means of the parameters.

Despite all these recent propositions, the impact of nonlinearity, redundancy, un-
informativeness, high dimensionality has been poorly investigated. In section 2 we propose
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to partially fill this gap using ABC–rejection on a toy example. In Section 3 we propose
a solution in the vein of the solution of Fearnhead and Prangle (2010): transforming the
summary statistics into point estimates of the parameters by fitting an empirical model
from the simulated data. Here, we use a regression model where the parameters are the
response variables and the summary statistics are explanatory variables. The empirical
model is known to be unsatisfactory from a scientific viewpoint as it is not mechanistic
contrarily to the implicit model, but it is only used to get point estimates of the parameters
which are then used as new summary statistics. In Section 4 we apply ABC–rejection and
ABC–Beaumont in the same toy example incorporating our transformation and compare
results.

2 Influence of the statistics in the ABC–rejection procedure

2.1 The ABC–rejection procedure

Consider observed data D ∈ D which are assumed to be generated under the stochastic
model Mθ parametrized by θ ∈ Θ with prior density π. The data space D and the
parameter space Θ are both included in multidimensional sets of real vectors. The posterior
distribution p(θ | D) can be estimated using the following ABC–rejection algorithm:

A1. Carry out the next two steps for i in {1, . . . , I}, independently

– Generate θi from π and simulate Di from Mθi .
– Accept θi if Di = D, reject it otherwise.

The set of accepted θi form a sample from the posterior distribution

p(θ | D) =
f(D | θ)π(θ)∫

Θ f(D | α)π(α)dα
,

where f(D | θ) is the conditional probability distribution function of D given θ, i.e. the
(un-tracktable or unknown) likelihood corresponding to the model Mθ.

In practice, this algorithm can rarely be used: the probability of generating Di equal
to D is very low when the dimensionality of the data space D is large and this probability
is even zero for continuous data. To circumvent this difficulty two ideas have been applied:
the introduction of a tolerance threshold and the replacement of the raw data by statistics.
This leads to the following ABC–rejection algorithm which will be extensively used in this
article (Pritchard et al., 1999):

A2. Carry out the next three steps for i in {1, . . . , I}, independently

– Generate θi from π and simulate Di from Mθi .
– Compute the summary statistics Si = s(Di), where s is a function from D to

the space S of statistics.
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– Accept θi if d(Si, S) ≤ ε, where d is a distance over S and ε is a tolerance
threshold for the distance between the observed statistics S = s(D) and the
simulated ones Si.

The set of accepted parameters, say Θε,I = {θi : d(Si, S) ≤ ε, i = 1, . . . , I}, forms a
sample from the posterior distribution

pε(θ | S) =

(∫
B(S,ε) g(z | θ)dz

)
π(θ)∫

Θ

(∫
B(S,ε) g(z | α)dz

)
π(α)dα

,

where g(S | θ) is the conditional probability distribution function of S given θ.
When ε tends to zero, pε(θ | S) was proved to be a good approximation of the posterior

distribution conditional on the statistics (Blum, 2010), i.e.

p(θ | S) =
g(S | θ)π(θ)∫

Θ g(S | α)π(α)dα
,

and the sample Θε,I of accepted parameters is approximately distributed under this pos-
terior distribution. In addition, if the sufficient statistics are used, g(S | θ) = f(D | θ) and
Θε,I is approximately a sample from the classical posterior distribution p(θ | D) conditional
on the data.

In practice, instead of the tolerance threshold ε, the analyst selects a tolerance rate
τ ∈]0, 1] and obtain ε as a function of τ : ε = ε(τ). A small value is generally chosen for τ .
Typically, τ is 0.001 (e.g. 103 accepted parameters among I = 106 simulations).

In many applications (see e.g. Estoup et al., 2004; Hamilton et al., 2005; Guillemaud
et al., 2009), the statistics are quantitative variables and the distance d(Si, S) is the Eu-
clidean distance up to a standardization of the components of the statistics (i.e. each
component of Si and S is divided by the corresponding empirical standard deviation cal-
culated by using the I simulations).

2.2 Comparison of the posterior distributions obtained with various statis-
tics

We first investigate the effect of the choice of the summary statistics on the approximation
of the posterior distribution. For this purpose we consider a toy example where the minimal
sufficient statistics are known and we study the effects of nonlinearity, redundancy, increase
in the dimension and lack of information in the summary statistics.

Toy example: The observed data set D = (X1, . . . , X40) is a sample of 40 independent
normal variables with expectation µ ∼ U[−2,2] and standard deviation σ ∼ U]0,4]. Similarly,
the prior for the simulated parameters, θi = (µi, σi), i = 1 . . . , I, is the uniform distribution
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over [−2, 2]×]0, 4] and each simulated data Di is a sample of 40 independant normal vari-
ables with parameter θi. Six alternative functions s for computing the summary statistics
are considered:

• Minimal sufficient statistics:

s1(D) = (X̄1:40, SD1:40),

where X̄i:j and SDi:j are, respectively, the empirical mean and standard deviation of
the (sub-)sample (Xi, . . . , Xj), 1 ≤ i < j ≤ 40;

• Statistics with nonlinearity:

s2(D) = (exp(X̄1:40), (SD1:40)2);

• Statistics with redundancy:

s3(D) = (X̄1:40, X̄1:20, X̄21:40, SD1:40);

• Statistics with an increase in the dimension:

s4(D) = (X̄1:10, X̄11:20, X̄21:30, X̄31:40, SD1:40);

• Statistics with un-informativeness:

s5(D) = (X̄1:40, SD1:40, B1, B2),

where B1 and B2 are two independent random variables drawn from the beta distri-
bution with shape parameters 0.1 and 0.1. Each time s5 is applied to a new data set,
new variables B1 and B2 are simulated independently. These random variables are
added but bring no information;

• Statistics gathering all handicaps together:

s6(D) = (X̄1:10, X̄11:20, X̄21:30, X̄31:40, (SD1:40)2, (SD1:20)2, (SD21:40)2, B1, B2).

We use the same simulations {(θi,Di) : i = 1, . . . , I} for the six sets of summary
statistics s1, . . . , s6. For distance d, we choose the Euclidean distance up to the stan-

dardization of the statistics components. Then, we obtain six posterior samples Θ
(j)
ε,I ,

j = 1, . . . , 6. These computations are repeated K times and each time a new observed
data set {(θ(k),D(k)) : k = 1, . . . ,K} is used. Three indices characterizing the posterior
samples are assessed for each parameter:

• Posterior interval (PI) coverage : mean percentage of 95%-PIs which include the true
value;

• PI length: mean length of the marginal 95%-PIs;
• Mean Square Error (MSE): MSE calculated with the marginal posterior median.
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Parameter µ

Statistics PI coverage (%) PI length Mean Square Error (*100)

s1 (minimal sufficiency) 95.2 (93.9,96.5) 1.17 (1.13,1.21) 11.62 (10.07,13.18)
s2 (nonlinearity) 95.5 (94.2,96.8) 1.18 (1.14,1.22) 11.81 (10.21,13.41)
s3 (redundancy) 95.8 (94.6,97.0) 1.16 (1.12,1.20) 11.46 ( 9.93,12.99)
s4 (dimension increase) 96.9 (95.8,98.0) 1.22 (1.18,1.26) 11.44 ( 9.95,12.92)
s5 (un-informativeness) 96.8 (95.7,97.9) 1.28 (1.24,1.31) 11.49 ( 9.98,12.99)
s6 (all handicaps) 96.9 (95.8,98.0) 1.32 (1.28,1.36) 11.60 (10.06,13.14)

Parameter σ

Statistics PI coverage (%) PI length Mean Square Error (*100)

s1 (minimal sufficiency) 95.7 (94.4,97.0) 0.85 (0.83,0.88) 6.21 (5.47,6.95)
s2 (nonlinearity) 95.1 (93.8,96.4) 0.88 (0.86,0.90) 6.39 (5.64,7.15)
s3 (redundancy) 96.3 (95.1,97.5) 0.92 (0.90,0.95) 6.34 (5.56,7.11)
s4 (dimension increase) 98.6 (97.9,99.3) 1.12 (1.09,1.15) 6.70 (5.90,7.51)
s5 (un-informativeness) 96.5 (95.4,97.6) 1.00 (0.98,1.02) 6.40 (5.64,7.15)
s6 (all handicaps) 98.3 (97.5,99.1) 1.24 (1.23,1.26) 8.51 (7.64,9.37)

Table 1: Characterization of the posterior distributions of parameters µ and σ obtained with the six
statistics functions s1, . . . , s6 and application of A2 algorithm on the toy example with I = 100, 000
simulations, τ = 0.001 the rate of accepted simulations and K = 103 repetitions carried out. Between
brackets:95%-confidence intervals of the mean values [± standard error].

Results: We set I = 100, 000 simulations, τ = 0.001 the rate of accepted simulations
and K = 103 repetitions carried out (see Table 1).

Concerning the PI coverage, we expect that 95% of the 95%-PIs include the true value
of the parameter. For the parameter µ, it is around 95% for statistics s1, s2 and s3 (resp.
95.2%, 95.5% and 95.8%) and their 95% confidence intervals (CI) contain the value 95%
(for exemple, CI=[93.9%;96.5%] for s1). The PI coverage for statistics s4, s5 and s6 are
significantly higher than 95% (the lower bound of their CIs are higher than 95%). For σ,
only two statistics, s1 and s2, are around 95%. The PI coverages for statistics s3, . . . , s6

are higher than 95%, in the same way than for µ.
The marginal 95%-PIs length for µ is significantly lower in average for statistics s1, . . . , s3

(lengths around 1.17) than for statistics s5 and s6 (lengths resp. 1.28 and 1.32): for exam-
ple CI(s6)=[1.28;1.36] whereas CI(s1)=[1.13;1.21]. The statistic s4 is between those two
groups, its CI intersects with both groups. One notice the same kind of results for σ:
the lower group s1 and s2 is significantly different from the group with higher PI length
s3, . . . , s6. The length of 95% interval for σ is lower than for µ: for example, resp. 0.85 and
1.17 for statistic s1. In summary, the marginal 95%-posterior intervals for µ and σ obtained
with s3, . . . , s6 tend to be larger than those obtained with s1 and tend to overreach the
95% confidence level, contrary to those obtained with s1. In constrast, results obtained
with statistic s2 (nonlinearity) are very close to those obtained with s1. In this example,
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the nonlinearity in the statistics does not affect inference on parameters.
Comparing the CIs, the MSE for µ is no significantly different between the six statistics

s1, . . . , s6. It is minimum for s4 (MSE=11.44) and maximum for s2 (MSE=11.81). Con-
cerning the parameter σ, the statistic s6 is significantly higher than the others (the lower
bound for s6 is 7.64 whereas the maximum of the other upper bounds is 7.51 for s4).

Finally, the summary statistics that included all handicaps achieved a bad performance
with MSE 1.4 times larger for σ and wide 95% confidence interval (length=1.24, PI cov-
erage=98.3%). These results show that analyzing only the mean square error (MSE) to
decide if a set of statistics give a good inference on parameters may be misleading, for pa-
rameter µ in this case: comparing MSE between statistics s1 and s6 for µ tends to choose
s6, but difference between both MSE is not significative and PI length is significantly larger
for s6 than s1. The MSE criterion has to be completed with another criterion, like the
length of the posterior interval, to analyze the quality of inference of a set of statistics.

Obviously, these results depend on the strength of the nonlinearity, the redundancy, the
increase in the dimension and the un-informativeness. They also depend on I and τ : larger
I and smaller τ tend to attenuate the differences between the minimal sufficient statistics
and the other statistics. If increasing the number I of simulations is not possible, then a
work concerning the statistics can be a fruitfull alternative. The approach proposed below
is in this vein.

3 A new ABC procedure conditional on parameter point
estimates

3.1 Method

Here, we propose to transform the statistics into point estimates of the parameters. These
estimates are obtained by introducing and fitting a second and empirical model where the
response variables are the parameters and the explanatory variables are the statistics:

θ = l(S) + ξ,

where l is in a set of regression functions L which has to be specified and ξ is an error term.
In a first step, based on a first set of simulated data, the empirical model is fitted. Then,
for any statistics S we are able to estimate θ. The estimates θ̂ then replace the statistics
S in the classical ABC procedure.

The aim of the empirical model is not to be informative, only to get point estimates
that we could use as new statistics. The function l̂ ∈ L is chosen to minimize a discrep-
ancy criterion between the simulated parameters θ and the transformed statistics l(S) (see
Section 3.4 for the choice of the discrepancy criterion and the set of functions L).
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The empirical model can be calibrated with the following algorithm:

A0. Carry out the next three steps

– For j in {1, . . . , J}, independently generate θj from π and Dj from Mθj ;
– Compute the statistics Sj = s(Dj), j = 1, . . . , J ;

– Estimate the function l̂ ∈ L which minimizes the discrepancy between the sim-
ulated parameters θj and the transformed statistics l(Sj), j = 1, . . . , J , l ∈ L.

3.2 Incorporating the parameter point estimates in ABC–rejection

Incorporating the proposed transformation into algorithm A2 provides the following algo-
rithm:

A2*. 1. Estimate empirical model l̂ with algorithm A0
2. Carry out the next three steps, independently for i in {1, . . . , I}:

– Generate θi from π and simulate Di from Mθi ;
– Compute the statistics Si = s(Di), then compute the point estimates θ̂i = l̂(Si)

of θi;
– Accept θi if dΘ(θ̂i, θ̂) ≤ εΘ, where dΘ is a distance over Θ and εΘ is a tolerance

threshold for the distance between the point estimate θ̂ = l̂(S) and the point
estimates of the simulated parameters.

The set of accepted parameters, say Θ̃ε,I = {θi : dΘ(θ̂i, θ̂) ≤ εΘ, i = 1, . . . , I}, forms a
sample from the posterior distribution

pεΘ(θ | θ̂) =

(∫
B(θ̂,εΘ) h(z | θ)dz

)
π(θ)∫

Θ

(∫
B(θ̂,εΘ) h(z | α)dz

)
π(α)dα

,

where h(θ̂ | θ) is the conditional probability distribution function of θ̂ given θ.

3.3 Incorporating the parameter point estimates in ABC–Beaumont

Classical ABC–Beaumont can be described as follows:

A3. 1. Carry out the next three steps, independently for i in {1, . . . , I},
– Generate θi from π and simulate Di from Mθi .
– Compute the statistics Si = s(Di), then compute the distance d(Si, S).
– Weight parameter θi according to the value of the distance using a kernel func-

tion Kδ(d(Si, S)), where Kδ(.) is any kernel function with bandwidth δ.
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2. Adjust a weighted local linear regression r̂ of θi on Si and estimate the adjusted
values θ∗i of θi as: θ∗i = r̂(S) + η̂i, where r̂(S) is the point estimate on observed
statistic S and η̂i = θi − r̂(Si) the residuals of the regression.
3. Approximate the posterior density p̂ of θ∗ on θ using a kernel density estimation
applied to the weighted sample:

p̂(θ | S) =

∑
iK∆(dΘ(θ∗i , θ))Kδ(d(Si, S))∑

iKδ(d(Si, S))

where K∆(.) is any kernel function with bandwidth ∆.

Asymptotic properties of this estimator are given in Blum (2010) and Hyndman et al.
(1996).

Incorporating the proposed transformation into algorithm A3 provides the following
algorithm:

A3*. 1. Estimate empirical model l̂ with algorithm A0
2. Carry out the next three steps, independently for i in {1, . . . , I},

– Generate θi from π and simulate Di from Mθi .
– Compute the statistics Si = s(Di), then compute the point estimates θ̂i = l̂(Si)

of θi and the distance dΘ(θ̂i, θ̂).
– Weight parameter θi according to the value of the distance using a kernel func-

tion Kδ(dΘ(θ̂i, θ̂)), where Kδ(.) is any kernel function with bandwidth δ.

3. Adjust a weighted local linear regression r̂ of θi on θ̂i and estimate the adjusted
values θ∗i of θi as: θ∗i = r̂(θ̂) + η̂i, where r̂(θ̂) is the point estimate on observed and
transformed statistic θ̂ and η̂i = θi − r̂(θ̂i) the residuals of the regression.
3. Approximate the posterior density p̂ of θ∗ on θ using a kernel density estimation
applied to the weighted sample:

p̂(θ | θ̂) =

∑
iK∆(dΘ(θ∗i , θ))Kδ(dΘ(θ̂i, θ̂))∑

iKδ(dΘ(θ̂i, θ̂))

where K∆(.) is any kernel function with bandwidth ∆.

One could think that the kernel K∆(.) should capture the information and that our
correction should not improve the estimator but the estimates θ̂ used as new statistics
could be more correlated with θ than the raw statistics S. Consequently, the result of the
local linear regression of θi on θ̂i could be more accurate than the one on Si.

3.4 Choice of the set of regression functions L and the discrepancy cri-
terion

The aim of the empirical model is not to be explicative of the mechanisms that provided
the observations but to get point estimates of parameters.
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Class of functions L: we choose the set of projection pursuit regressions, or PPR
(Friedman and Stuetzle, 1981; Hall, 1989). It presents some advantages compared with
methods previously used (Joyce and Marjoram, 2008; Wegmann et al., 2009; Blum and
François, 2010; Fearnhead and Prangle, 2010): (i) PPR allows to fit a different model for
each component of parameter θ, (ii) a PPR model is a linear combination of smoothed
linear or nonlinear functions of explanatory variables that naturally considers interactions
of predictors, (iii) PPR does not require specification of a metric in the predictor space,
(iv) PPR can estimate a much larger class of models than a simple linear regression.
Each component of the parameter θ is explained separately using all summary statistics
as explanatory variables. The set of PPR functions is defined by Friedman and Stuetzle
(1981) as:

l(S) =

M∑
m=1

fαm(αm.S)

where αm is a vector of coefficient, αm.S the inner product, fαm a univariate function and
M the number of functions of explanatory variables to be used.

Considering a parameter to explain θ[k] ∈ R and the explanatory variables S ∈ Rp, the
model is fitted iteratively by the following algorithm:

1. Set r
[0]
i = θ

[k]
i

2. For j = 1, . . . maximize

R[j] = 1−

∑I
i=1

(
r

[j−1]
i − f [k]

[j] (α
[k]
[j] .Si)

)2

∑I
i=1

(
r

[j−1]
i

)2

fitting the coefficients α
[k]
[j] ∈ Rp and a univariate regression function f

[k]
[j] .

3. Define r
[j]
i = r

[j−1]
i − f [k]

[j] (α
[k]
[j] .Si) and repeat step 2 until R[j] is small.

Depending on the software, a threshold for a small R[j] can be defined to stop the
algorithm. We choose to use the ppr function of the software R with default options, only
precising the nterms option to the total number of summary statistics used to fit the model.

Discrepancy criterion: we choose the least squares as discrepancy criterion between
the simulated parameters θ[k] and the transformed statistics l[k](S):

l̂[k] = arg min
l[k]∈L

I∑
i=1

(
θ

[k]
i − l

[k](Si)
)2

which has to be minimized in L a set of regression functions.
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4 Application to a toy example: parameters of a Gaussian
distribution

We study the performance of our estimator on the same gaussian example as presented
in Section 2, using the same model and the same statistics sj , j = 1, . . . , 6. We apply the
algorithms A2 (Rejection), A2* (PPR + Rejection), A3 (Beaumont) and A3* (PPR +
Beaumont).

Parameter µ

Stat. A2 A2* A3 A3*

s1 0.23 (-1.88,2.35) 0.05 (-2.07,2.17) 0.30 (-1.82,2.42) 0.23 (-1.90,2.35)
Bias (*100)

s6 0.35 (-1.77,2.46) 0.11 (-2.01,2.23) 0.33 (-1.79,2.46) 0.07 (-2.06,2.21)

s1 11.62 (10.07,13.18) 11.67 (10.11,13.23) 11.69 (10.11,13.28) 11.76 (10.18,13.33)
MSE (*100)

s6 11.60 (10.06,13.14) 11.67 (10.13,13.21) 11.71 (10.13,13.29) 11.78 (10.22,13.33)

s1 95.2 (93.9,96.5) 95.4 (94.1,96.7) 94.5 (93.1,95.9) 94.5 (93.1,95.9)
PI cov. (%)

s6 96.9 (95.8,98.0) 95.1 (93.8,96.4) 96.3 (95.1,97.5) 94.6 (93.2,96.0)

s1 1.17 (1.13,1.21) 1.17 (1.13,1.21) 1.17 (1.13,1.21) 1.16 (1.12,1.20)
PI length

s6 1.32 (1.28,1.36) 1.17 (1.13,1.21) 1.27 (1.23,1.31) 1.17 (1.13,1.21)

Parameter σ

Stat. A2 A2* A3 A3*

s1 -3.07 ( -4.60, -1.53) -3.07 (-4.62,-1.53) -3.12 ( -4.66,-1.59) -3.08 (-4.62,-1.53)
Bias (*100)

s6 -12.44 (-14.08,-10.81) -3.08 (-4.62,-1.53) -10.57 (-12.19,-8.96) -3.09 (-4.63,-1.54)

s1 6.21 (5.47,6.95) 6.27 (5.52,7.03) 6.22 (5.47,6.97) 6.28 (5.52,7.05)
MSE (*100)

s6 8.51 (7.64,9.37) 6.27 (5.52,7.03) 7.88 (7.04,8.72) 6.28 (5.53,7.04)

s1 95.7 (94.4,97.0) 95.5 (94.2,96.8) 95.2 (93.9,96.5) 95.4 (94.1,96.7)
PI cov. (%)

s6 98.3 (97.5,99.1) 95.1 (93.8,96.4) 97.9 (97.0,98.8) 94.6 (93.2,96.0)

s1 0.85 (0.83,0.88) 0.85 (0.82,0.87) 0.84 (0.82,0.87) 0.84 (0.82,0.87)
PI length

s6 1.24 (1.23,1.26) 0.84 (0.82,0.87) 1.18 (1.16,1.20) 0.84 (0.81,0.86)

Table 2: Characterization of the posterior distributions of parameters µ and σ obtained with statis-
tics functions s1 and s6 and application of A2 (ABC–Rejection), A2* (PPR + ABC–Rejection), A3
(ABC–Beaumont) and A3* (PPR + ABC–Beaumont) algorithms on the toy example with I = 100, 000
simulations, τ = 0.001 the rate of accepted simulations and K = 103 repetitions carried out. Between
brackets:95%-confidence intervals of the mean values.

Bias, Mean Square Error, PI coverage and PI length: We expect that inferences
made with statistics corrected by a PPR regression model will provide better results thant
inferences made by uncorrected statistics in the case of handicaped summary statistics
(cases s2, . . . , s6). We also investigate wether statistics corrected by PPR regression model
succeed in reaching similar accuracy than the non-corrected sufficient statistics.

We only present minimal sufficient statistics s1 in comparison to statistic gathering all
handicaps s6 (for exhaustive results on statistics sj , j = 1, . . . , 6 see Appendix A, Tables 3
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and 4). Concerning the parameter µ, the bias and the MSE are not significantly different
between all algorithms and statistics: for example, with alogorith A3, MSE for s1 is 11.69
(CI=[10.11,13.28]) and is 11.71 for s6 (CI=[10.13,13.29]) (see Table 2). On the other hand,
the PI coverage and the PI length, for each pair of algorithms (A2 and A2* or A3 and A3*),
are significantly different between sufficient statistics and uncorrected handicap statistics
when it is not between sufficient statistics and handicap statistics corrected by PPR model
regression. The PI coverage is higher than 95% for uncorrected s6 with algorithm A2
(CI=[95.8,98.0]) when it contains the 95% value for s1 (CI=[93.9,96.5]) and for corrected
s6 with A2* algorithm (CI=[93.8,96.4]). In the same way, the PI length for uncorrected
s6 is significantly larger than those for s1 or corrected s6 in ABC–Rejection or in ABC–
Beaumont.

Concerning the parameter σ, all results have the same profile: corrected handicap
statistics succeed to reach same accuracy than non-corrected sufficient statistics when the
non-corrected handicap statistics does not. For example in ABC–Beaumont (algorithms
A3 and A3*), the bias for non-corrected s6 (bias=-10.57) is larger in absolute value than
the one for non-corrected s1 (bias=-3.12) or corrected s6 (bias=-3.09); also, the MSE, the
PI coverage and the PI length are larger for non-corrected s6 than for non-corrected s1 and
corrected s6. The results for ABC–Rejection lead to the same conclusions.

On this example, the correction allows to reach the expected results, except for the bias
and MSE on the parameter µ. Also, as already shown in Section 2, the MSE criterion has
to be completed with the length of the posterior interval to analyze the quality of inference
of the sets of statistics.

Estimation of the posterior density: Figure 1 shows the effect of the PPR correction
on the estimation of the joint posterior density of parameters (µ, σ) on a particular exam-
ple. We set I = 1, 000, 000 simulations and τ = 0.001 of accepted parameters and used
algorithms A2 on s1 and s6 and A2* on s6.

The area of the posterior density estimated with point estimates s∗6 is as reduced as
the one obtained for minimal sufficient statistics s1. Contrastedly, the one estimated with
statistic s6 is more extended.

5 Discussion

Approximate Bayesian computation procedures have been developped to allow estimation
of parameters when the likelihood of the data is not tractable, such as the case of implicit
statistical models. They are based on summary statistics and a tolerance threshold and
face the same difficulty: the choice of the summary statistics. This choice can be more or
less difficult according to the field of analyze and the knowledge of the relation between
available summary statistics and parameters to estimate. When the relation is not well
known, the analyst has to be helped to understand the role of summary statistics, to choose

12
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Figure 1: Estimation of the joint density by ABC-rejection made on 106 simulations with 10−3 of accepted
parameters for (µ, σ) = (0.05,1.15)

them or decide to let them all, and to correct them before running an ABC procedure if it
is needed.

The toy example shows that the dimension of the statistics and their handicaps (non-
linearity, redundancy, un-informativeness, high dimensionality) are problems that are not
managed correctly by classical ABC procedures. Each handicap does not play the same
role: the nonlinearity represented by statistic s2 lead to results close to those of sufficient
statistic s1. The handicaps do not cumulate together: results for the statistic s6 gathering
all handicaps is not the addition of the results for the statistics s2, . . . , s5 representing each
of the handicaps. The choice of a set of summary statistics can be based on the MSE
criterion (Beaumont et al., 2002; Joyce and Marjoram, 2008). The calculation of the MSE
for the parameter µ on the toy example makes appear that it can not be taken as only
criterion to decide of the quality of inference of a set of summary statistics. The MSE
completed with another criterion like the length of posterior interval can be used as a tool
of validation of the proposed transformation of the statistics. The toy example also allows
to compare the ABC–Rejection and ABC–Beaumont procedures and shows that, besides
some few cases, the ABC–Beaumont procedure leads to results closer to those of sufficient
statistics than the ABC–Rejection procedure.

Very recently, Fearnhead and Prangle (2010) propose to construct summary statistics
choosing posterior means of the parameters. The point estimates we propose are in the
same vein, using a PPR regression model for the transformation of data. In the toy
example, these point estimates are as efficient as sufficient statistics, even for summary
statistics gathering all handicaps.

The proposed method presents two advantages. Concerning the computation time,
the model is estimated in a first step, independent of the ABC procedure which comes
in a second step. The calibration of the model does not require a large set of data: for

13



example, we used 104 simulations to calibrate the 12 models of the toy example (6 sets
of summary statistics x 2 parameters). The independance between the calibration and
the ABC procedure makes that this method of transformation can be integrated and used
in any ABC procedure (ABC–Beaumont, ABC–Blum, ABC–MCMC, ABC–PMC, ABC–
SMC,. . .).

It could be interesting to replace the PPR regression model by another set of regression
models, like linear models for example, and see result on the accuracy of the transformation.
In the same way, the example we used is a very simple one in which the sufficient statistics
are known. An application on a more difficult example, like a coalescent model, would be
a good future improvement.

A Appendix

14



B
ia

s
fo

r
µ

(*
10

0)
S
ta

ti
st

ic
s

R
ej

ec
ti

o
n

(A
2
)

P
P

R
+

R
ej

ec
ti

o
n

(A
2
*
)

B
ea

u
m

o
n
t

(A
3
)

P
P

R
+

B
ea

u
m

o
n
t

(A
3
*
)

s 1
(m

in
im

a
l

su
ffi

ci
en

cy
)

0
.2

3
(-

1
.8

8
,2

.3
5
)

0
.0

5
(-

2
.0

7
,2

.1
7
)

0
.3

0
(-

1
.8

2
,2

.4
2
)

0
.2

3
(-

1
.9

0
,2

.3
5
)

s 2
(n

o
n
li
n
ea

ri
ty

)
-0

.0
7

(-
2
.2

1
,2

.0
6
)

0
.1

1
(-

2
.0

1
,2

.2
4
)

0
.0

8
(-

2
.0

5
,2

.2
1
)

0
.2

5
(-

1
.8

8
,2

.3
8
)

s 3
(r

ed
u
n
d
a
n
cy

)
0
.0

9
(-

2
.0

1
,2

.1
9
)

0
.1

3
(-

2
.0

0
,2

.2
6
)

0
.2

0
(-

1
.9

1
,2

.3
2
)

0
.2

1
(-

1
.9

2
,2

.3
3
)

s 4
(d

im
en

si
o
n

in
cr

ea
se

)
0
.1

8
(-

1
.9

2
,2

.2
8
)

0
.2

4
(-

1
.8

7
,2

.3
5
)

0
.1

2
(-

2
.0

0
,2

.2
4
)

0
.2

2
(-

1
.9

1
,2

.3
4
)

s 5
(u

n
-i

n
fo

rm
a
ti

v
en

es
s)

-0
.0

3
(-

2
.1

4
,2

.0
7
)

0
.1

1
(-

2
.0

1
,2

.2
2
)

-0
.1

1
(-

2
.2

2
,2

.0
0
)

0
.1

7
(-

1
.9

6
,2

.3
0
)

s 6
(a

ll
h
a
n
d
ic

a
p
s)

0
.3

5
(-

1
.7

7
,2

.4
6
)

0
.1

1
(-

2
.0

1
,2

.2
3
)

0
.3

3
(-

1
.7

9
,2

.4
6
)

0
.0

7
(-

2
.0

6
,2

.2
1
)

B
ia

s
fo

r
σ

(*
10

0)
S
ta

ti
st

ic
s

R
ej

ec
ti

o
n

(A
2
)

P
P

R
+

R
ej

ec
ti

o
n

(A
2
*
)

B
ea

u
m

o
n
t

(A
3
)

P
P

R
+

B
ea

u
m

o
n
t

(A
3
*
)

s 1
(m

in
im

a
l

su
ffi

ci
en

cy
)

-3
.0

7
(

-4
.6

0
,

-1
.5

3
)

-3
.0

7
(-

4
.6

2
,-

1
.5

3
)

-3
.1

2
(

-4
.6

6
,-

1
.5

9
)

-3
.0

8
(-

4
.6

2
,-

1
.5

3
)

s 2
(n

o
n
li
n
ea

ri
ty

)
-3

.2
3

(
-4

.7
9
,

-1
.6

7
)

-3
.0

9
(-

4
.6

3
,-

1
.5

5
)

-3
.2

0
(

-4
.7

6
,-

1
.6

5
)

-3
.0

9
(-

4
.6

3
,-

1
.5

5
)

s 3
(r

ed
u
n
d
a
n
cy

)
-3

.2
5

(
-4

.8
0
,

-1
.7

0
)

-3
.2

0
(-

4
.7

5
,-

1
.6

5
)

-3
.2

1
(

-4
.7

6
,-

1
.6

6
)

-3
.1

8
(-

4
.7

3
,-

1
.6

3
)

s 4
(d

im
en

si
o
n

in
cr

ea
se

)
-5

.0
8

(
-6

.6
6
,

-3
.5

1
)

-3
.0

5
(-

4
.5

9
,-

1
.5

1
)

-4
.5

2
(

-6
.1

0
,-

2
.9

5
)

-2
.9

9
(-

4
.5

3
,-

1
.4

4
)

s 5
(u

n
-i

n
fo

rm
a
ti

v
en

es
s)

-3
.3

8
(

-4
.9

4
,

-1
.8

3
)

-3
.1

3
(-

4
.6

8
,-

1
.5

8
)

-3
.3

2
(

-4
.8

8
,-

1
.7

6
)

-3
.1

3
(-

4
.6

7
,-

1
.5

9
)

s 6
(a

ll
h
a
n
d
ic

a
p
s)

-1
2
.4

4
(-

1
4
.0

8
,-

1
0
.8

1
)

-3
.0

8
(-

4
.6

2
,-

1
.5

3
)

-1
0
.5

7
(-

1
2
.1

9
,-

8
.9

6
)

-3
.0

9
(-

4
.6

3
,-

1
.5

4
)

M
ea

n
S

q
u

ar
e

E
rr

or
fo

r
µ

(*
10

0)
S
ta

ti
st

ic
s

R
ej

ec
ti

o
n

(A
2
)

P
P

R
+

R
ej

ec
ti

o
n

(A
2
*
)

B
ea

u
m

o
n
t

(A
3
)

P
P

R
+

B
ea

u
m

o
n
t

(A
3
*
)

s 1
(m

in
im

a
l

su
ffi

ci
en

cy
)

1
1
.6

2
(1

0
.0

7
,1

3
.1

8
)

1
1
.6

7
(1

0
.1

1
,1

3
.2

3
)

1
1
.6

9
(1

0
.1

1
,1

3
.2

8
)

1
1
.7

6
(1

0
.1

8
,1

3
.3

3
)

s 2
(n

o
n
li
n
ea

ri
ty

)
1
1
.8

1
(1

0
.2

1
,1

3
.4

1
)

1
1
.7

1
(1

0
.1

4
,1

3
.2

8
)

1
1
.7

6
(1

0
.1

5
,1

3
.3

7
)

1
1
.7

8
(1

0
.2

0
,1

3
.3

6
)

s 3
(r

ed
u
n
d
a
n
cy

)
1
1
.4

6
(

9
.9

3
,1

2
.9

9
)

1
1
.7

6
(1

0
.2

0
,1

3
.3

3
)

1
1
.6

0
(1

0
.0

5
,1

3
.1

6
)

1
1
.7

3
(1

0
.1

8
,1

3
.2

9
)

s 4
(d

im
en

si
o
n

in
cr

ea
se

)
1
1
.4

4
(

9
.9

5
,1

2
.9

2
)

1
1
.5

7
(1

0
.0

2
,1

3
.1

3
)

1
1
.6

8
(1

0
.1

3
,1

3
.2

2
)

1
1
.7

1
(1

0
.1

0
,1

3
.3

3
)

s 5
(u

n
-i

n
fo

rm
a
ti

v
en

es
s)

1
1
.4

9
(

9
.9

8
,1

2
.9

9
)

1
1
.6

2
(1

0
.0

5
,1

3
.1

8
)

1
1
.5

3
(

9
.9

9
,1

3
.0

6
)

1
1
.7

7
(1

0
.1

7
,1

3
.3

6
)

s 6
(a

ll
h
a
n
d
ic

a
p
s)

1
1
.6

0
(1

0
.0

6
,1

3
.1

4
)

1
1
.6

7
(1

0
.1

3
,1

3
.2

1
)

1
1
.7

1
(1

0
.1

3
,1

3
.2

9
)

1
1
.7

8
(1

0
.2

2
,1

3
.3

3
)

M
ea

n
S

q
u

ar
e

E
rr

or
fo

r
σ

(*
10

0)
S
ta

ti
st

ic
s

R
ej

ec
ti

o
n

(A
2
)

P
P

R
+

R
ej

ec
ti

o
n

(A
2
*
)

B
ea

u
m

o
n
t

(A
3
)

P
P

R
+

B
ea

u
m

o
n
t

(A
3
*
)

s 1
(m

in
im

a
l

su
ffi

ci
en

cy
)

6
.2

1
(5

.4
7
,6

.9
5
)

6
.2

7
(5

.5
2
,7

.0
3
)

6
.2

2
(5

.4
7
,6

.9
7
)

6
.2

8
(5

.5
2
,7

.0
5
)

s 2
(n

o
n
li
n
ea

ri
ty

)
6
.3

9
(5

.6
4
,7

.1
5
)

6
.2

8
(5

.5
3
,7

.0
3
)

6
.3

6
(5

.6
1
,7

.1
1
)

6
.2

6
(5

.5
0
,7

.0
2
)

s 3
(r

ed
u
n
d
a
n
cy

)
6
.3

4
(5

.5
6
,7

.1
1
)

6
.3

2
(5

.5
6
,7

.0
8
)

6
.3

4
(5

.5
7
,7

.1
2
)

6
.3

4
(5

.5
7
,7

.1
1
)

s 4
(d

im
en

si
o
n

in
cr

ea
se

)
6
.7

0
(5

.9
0
,7

.5
1
)

6
.2

6
(5

.5
1
,7

.0
2
)

6
.6

4
(5

.8
4
,7

.4
4
)

6
.2

9
(5

.5
4
,7

.0
5
)

s 5
(u

n
-i

n
fo

rm
a
ti

v
en

es
s)

6
.4

0
(5

.6
4
,7

.1
5
)

6
.3

2
(5

.5
5
,7

.0
9
)

6
.4

2
(5

.6
5
,7

.1
9
)

6
.2

5
(5

.4
9
,7

.0
1
)

s 6
(a

ll
h
a
n
d
ic

a
p
s)

8
.5

1
(7

.6
4
,9

.3
7
)

6
.2

7
(5

.5
2
,7

.0
3
)

7
.8

8
(7

.0
4
,8

.7
2
)

6
.2

8
(5

.5
3
,7

.0
4
)

T
a
b

le
3
:

C
h
a
ra

ct
er

iz
a
ti

o
n

o
f

th
e

m
ea

n
b
ia

s
a
n
d

m
ea

n
sq

u
a
re

er
ro

r
fo

r
µ

a
n
d
σ

o
b
ta

in
ed

w
it

h
si

x
st

a
ti

st
ic

s
fu

n
ct

io
n
s
s 1
,.
..
,s

6
a
n
d

a
p
p
li
ca

ti
o
n

o
f
A
2
,
A
2
*
,
A
3

a
n
d

A
3
*

a
lg

o
ri

th
m

s
fo

r
a

n
o
rm

a
l

sa
m

p
le

fr
o
m
N

(µ
,σ

),
µ
∈

[−
2
;2

]
a
n
d
σ
∈

(0
;4

].
1
0

3
re

p
et

it
io

n
s

w
h
er

e
ca

rr
ie

d
o
u
t.

T
h
e

S
q
u
a
re

E
rr

o
r

fo
r
µ

a
n
d
σ

is
ca

lc
u
la

te
d

w
it

h
th

e
p

o
st

er
io

r
m

ed
ia

n
.

B
et

w
ee

n
b
ra

ck
et

s:
9
5
%

-c
o
n
fi
d
en

ce
in

te
rv

a
ls

o
f

th
e

m
ea

n
va

lu
es

.

15



P
I

co
ve

ra
ge

fo
r
µ

(%
)

S
ta

ti
st

ic
s

R
ej

ec
ti

o
n

(A
2
)

P
P

R
+

R
ej

ec
ti

o
n

(A
2
*
)

B
ea

u
m

o
n
t

(A
3
)

P
P

R
+

B
ea

u
m

o
n
t

(A
3
*
)

s 1
(m

in
im

a
l

su
ffi

ci
en

cy
)

9
5
.2

(9
3
.9

,9
6
.5

)
9
5
.4

(9
4
.1

,9
6
.7

)
9
4
.5

(9
3
.1

,9
5
.9

)
9
4
.5

(9
3
.1

,9
5
.9

)
s 2

(n
o
n
li
n
ea

ri
ty

)
9
5
.5

(9
4
.2

,9
6
.8

)
9
5
.3

(9
4
.0

,9
6
.6

)
9
5
.0

(9
3
.6

,9
6
.4

)
9
5
.0

(9
3
.6

,9
6
.4

)
s 3

(r
ed

u
n
d
a
n
cy

)
9
5
.8

(9
4
.6

,9
7
.0

)
9
5
.6

(9
4
.3

,9
6
.9

)
9
5
.2

(9
3
.9

,9
6
.5

)
9
5
.1

(9
3
.8

,9
6
.4

)
s 4

(d
im

en
si

o
n

in
cr

ea
se

)
9
6
.9

(9
5
.8

,9
8
.0

)
9
4
.8

(9
3
.4

,9
6
.2

)
9
5
.5

(9
4
.2

,9
6
.8

)
9
4
.7

(9
3
.3

,9
6
.1

)
s 5

(u
n
-i

n
fo

rm
a
ti

v
en

es
s)

9
6
.8

(9
5
.7

,9
7
.9

)
9
4
.9

(9
3
.5

,9
6
.3

)
9
6
.4

(9
5
.2

,9
7
.6

)
9
4
.4

(9
3
.0

,9
5
.8

)
s 6

(a
ll

h
a
n
d
ic

a
p
s)

9
6
.9

(9
5
.8

,9
8
.0

)
9
5
.1

(9
3
.8

,9
6
.4

)
9
6
.3

(9
5
.1

,9
7
.5

)
9
4
.6

(9
3
.2

,9
6
.0

)

P
I

co
ve

ra
ge

fo
r
σ

(%
)

S
ta

ti
st

ic
s

R
ej

ec
ti

o
n

(A
2
)

P
P

R
+

R
ej

ec
ti

o
n

(A
2
*
)

B
ea

u
m

o
n
t

(A
3
)

P
P

R
+

B
ea

u
m

o
n
t

(A
3
*
)

s 1
(m

in
im

a
l

su
ffi

ci
en

cy
)

9
5
.7

(9
4
.4

,9
7
.0

)
9
5
.5

(9
4
.2

,9
6
.8

)
9
5
.2

(9
3
.9

,9
6
.5

)
9
5
.4

(9
4
.1

,9
6
.7

)
s 2

(n
o
n
li
n
ea

ri
ty

)
9
5
.1

(9
3
.8

,9
6
.4

)
9
5
.7

(9
4
.4

,9
7
.0

)
9
4
.8

(9
3
.4

,9
6
.2

)
9
5
.5

(9
4
.2

,9
6
.8

)
s 3

(r
ed

u
n
d
a
n
cy

)
9
6
.3

(9
5
.1

,9
7
.5

)
9
5
.3

(9
4
.0

,9
6
.6

)
9
5
.6

(9
4
.3

,9
6
.9

)
9
5
.6

(9
4
.3

,9
6
.9

)
s 4

(d
im

en
si

o
n

in
cr

ea
se

)
9
8
.6

(9
7
.9

,9
9
.3

)
9
5
.1

(9
3
.8

,9
6
.4

)
9
8
.2

(9
7
.4

,9
9
.0

)
9
4
.8

(9
3
.4

,9
6
.2

)
s 5

(u
n
-i

n
fo

rm
a
ti

v
en

es
s)

9
6
.5

(9
5
.4

,9
7
.6

)
9
5
.0

(9
3
.6

,9
6
.4

)
9
6
.7

(9
5
.6

,9
7
.8

)
9
4
.3

(9
2
.9

,9
5
.7

)
s 6

(a
ll

h
a
n
d
ic

a
p
s)

9
8
.3

(9
7
.5

,9
9
.1

)
9
5
.1

(9
3
.8

,9
6
.4

)
9
7
.9

(9
7
.0

,9
8
.8

)
9
4
.6

(9
3
.2

,9
6
.0

)

P
I

le
n

gt
h

fo
r
µ

S
ta

ti
st

ic
s

R
ej

ec
ti

o
n

(A
2
)

P
P

R
+

R
ej

ec
ti

o
n

(A
2
*
)

B
ea

u
m

o
n
t

(A
3
)

P
P

R
+

B
ea

u
m

o
n
t

(A
3
*
)

s 1
(m

in
im

a
l

su
ffi

ci
en

cy
)

1
.1

7
(1

.1
3
,1

.2
1
)

1
.1

7
(1

.1
3
,1

.2
1
)

1
.1

7
(1

.1
3
,1

.2
1
)

1
.1

6
(1

.1
2
,1

.2
0
)

s 2
(n

o
n
li
n
ea

ri
ty

)
1
.1

8
(1

.1
4
,1

.2
2
)

1
.1

6
(1

.1
2
,1

.2
0
)

1
.1

7
(1

.1
3
,1

.2
1
)

1
.1

6
(1

.1
2
,1

.2
0
)

s 3
(r

ed
u
n
d
a
n
cy

)
1
.1

6
(1

.1
2
,1

.2
0
)

1
.1

6
(1

.1
3
,1

.2
0
)

1
.1

5
(1

.1
1
,1

.1
9
)

1
.1

6
(1

.1
2
,1

.2
0
)

s 4
(d

im
en

si
o
n

in
cr

ea
se

)
1
.2

2
(1

.1
8
,1

.2
6
)

1
.1

6
(1

.1
2
,1

.2
0
)

1
.1

8
(1

.1
4
,1

.2
2
)

1
.1

6
(1

.1
2
,1

.2
0
)

s 5
(u

n
-i

n
fo

rm
a
ti

v
en

es
s)

1
.2

8
(1

.2
4
,1

.3
1
)

1
.1

7
(1

.1
3
,1

.2
1
)

1
.2

4
(1

.2
0
,1

.2
8
)

1
.1

6
(1

.1
3
,1

.2
0
)

s 6
(a

ll
h
a
n
d
ic

a
p
s)

1
.3

2
(1

.2
8
,1

.3
6
)

1
.1

7
(1

.1
3
,1

.2
1
)

1
.2

7
(1

.2
3
,1

.3
1
)

1
.1

7
(1

.1
3
,1

.2
1
)

P
I

le
n

gt
h

fo
r
σ

S
ta

ti
st

ic
s

R
ej

ec
ti

o
n

(A
2
)

P
P

R
+

R
ej

ec
ti

o
n

(A
2
*
)

B
ea

u
m

o
n
t

(A
3
)

P
P

R
+

B
ea

u
m

o
n
t

(A
3
*
)

s 1
(m

in
im

a
l

su
ffi

ci
en

cy
)

0
.8

5
(0

.8
3
,0

.8
8
)

0
.8

5
(0

.8
2
,0

.8
7
)

0
.8

4
(0

.8
2
,0

.8
7
)

0
.8

4
(0

.8
2
,0

.8
7
)

s 2
(n

o
n
li
n
ea

ri
ty

)
0
.8

8
(0

.8
6
,0

.9
0
)

0
.8

5
(0

.8
3
,0

.8
8
)

0
.8

7
(0

.8
4
,0

.8
9
)

0
.8

4
(0

.8
2
,0

.8
7
)

s 3
(r

ed
u
n
d
a
n
cy

)
0
.9

2
(0

.9
0
,0

.9
5
)

0
.8

5
(0

.8
3
,0

.8
8
)

0
.9

0
(0

.8
7
,0

.9
2
)

0
.8

5
(0

.8
2
,0

.8
7
)

s 4
(d

im
en

si
o
n

in
cr

ea
se

)
1
.1

2
(1

.0
9
,1

.1
5
)

0
.8

5
(0

.8
2
,0

.8
7
)

1
.0

5
(1

.0
3
,1

.0
8
)

0
.8

4
(0

.8
2
,0

.8
7
)

s 5
(u

n
-i

n
fo

rm
a
ti

v
en

es
s)

1
.0

0
(0

.9
8
,1

.0
2
)

0
.8

5
(0

.8
3
,0

.8
8
)

0
.9

6
(0

.9
4
,0

.9
8
)

0
.8

4
(0

.8
2
,0

.8
7
)

s 6
(a

ll
h
a
n
d
ic

a
p
s)

1
.2

4
(1

.2
3
,1

.2
6
)

0
.8

4
(0

.8
2
,0

.8
7
)

1
.1

8
(1

.1
6
,1

.2
0
)

0
.8

4
(0

.8
1
,0

.8
6
)

T
a
b

le
4
:

C
h
a
ra

ct
er

iz
a
ti

o
n

o
f

th
e

m
ea

n
s

o
f

P
I

le
n
g
th

a
n
d

P
I

co
v
er

a
g
ef

o
r
µ

a
n
d
σ

o
b
ta

in
ed

w
it

h
si

x
st

a
ti

st
ic

s
fu

n
ct

io
n
s
s 1
,.
..
,s

6
a
n
d

a
p
p
li
ca

ti
o
n

o
f
A
2
,
A
2
*
,
A
3

a
n
d

A
3
*

a
lg

o
ri

th
m

s
fo

r
a

n
o
rm

a
l

sa
m

p
le

fr
o
m
N

(µ
,σ

),
µ
∈

[−
2
;2

]
a
n
d
σ
∈

(0
;4

].
1
0

3
re

p
et

it
io

n
s

w
h
er

e
ca

rr
ie

d
o
u
t.

T
h
e

p
o
st

er
io

r
in

te
rv

a
l

(P
I)

co
v
er

a
g
e

fo
r
µ

(r
es

p
.
σ

)
is

th
e

m
ea

n
p

er
ce

n
ta

g
e

o
f

9
5
%

-P
Is

w
h
ic

h
in

cl
u
d
e

th
e

tr
u
e

va
lu

e
µ

0

(r
es

p
.
σ

0
).

T
h
e

P
I

le
n
g
th

s
fo

r
µ

a
n
d
σ

a
re

th
e

m
ea

n
le

n
g
th

s
o
f

th
e

m
a
rg

in
a
l

9
5
%

-P
Is

.
B

et
w

ee
n

b
ra

ck
et

s:
9
5
%

-c
o
n
fi
d
en

ce
in

te
rv

a
ls

o
f

th
e

p
er

ce
n
ta

g
es

a
n
d

m
ea

n
va

lu
es

.

16



References

Beaumont, M., J. Marin, and J. Cornuet (2009). Adaptivity for abc algorithms: the
abc-pmc. Biometrika 96 (4), 983–990.

Beaumont, M., W. Zhang, and D. Balding (2002). Approximate bayesian computation in
population genetics. Genetics 162 (4), 2025.

Blum, M. and O. François (2010). Non-linear regression models for approximate bayesian
computation. Statistics and Computing 20 (1), 63–73.

Blum, M. G. B. (2010, SEP). Approximate bayesian computation: A nonparametric per-
spective. Journal of the American statistical Association 105 (491), 1178–1187.

Diggle, P. and R. Gratton (1984). Monte carlo methods of inference for implicit statistical
models. Journal of the Royal Statistical Society. Series B (Methodological) 46 (2), 193–
227.

Estoup, A., M. Beaumont, F. Sennedot, C. Moritz, and J. Cornuet (2004). Genetic analysis
of complex demographic scenarios: spatially expanding populations of the cane toad,
bufo marinus. Evolution 58 (9), 2021–2036.

Fearnhead, P. and D. Prangle (2010). Semi-automatic approximate bayesian computation.
Arxiv preprint arXiv:1004.1112 .

Friedman, J. and W. Stuetzle (1981). Projection pursuit regression. Journal of the Amer-
ican statistical Association 76 (376), 817–823.

Guillemaud, T., M. Beaumont, M. Ciosi, J. Cornuet, and A. Estoup (2009). Inferring
introduction routes of invasive species using approximate bayesian computation on mi-
crosatellite data. Heredity 104 (1), 88–99.

Hall, P. (1989). On projection pursuit regression. The Annals of Statistics 17 (2), 573–588.

Hamilton, G., M. Currat, N. Ray, G. Heckel, M. Beaumont, and L. Excoffier (2005).
Bayesian estimation of recent migration rates after a spatial expansion. Genetics 170 (1),
409.

Hyndman, R. J., D. M. Bashtannyk, and G. K. Grunwald (1996). Estimating and visual-
izing conditional densities. Journal of Computational and Graphical Statistics 5 (4), pp.
315–336.

Joyce, P. and P. Marjoram (2008). Approximately sufficient statistics and bayesian com-
putation. Statistical Applications in Genetics and Molecular Biology 7 (1), 26.

17



Marin, J., P. Pudlo, C. Robert, and R. Ryder (2011). Approximate bayesian computational
methods. Arxiv preprint arXiv:1101.0955 .

Marjoram, P., J. Molitor, V. Plagnol, and S. Tavaré (2003). Markov chain monte carlo
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